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How valid is Taylor dispersion formula in
slugs?
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Abstract

In a landmark paper, Taylor predicted that shear flow increases
the effective diffusivity of species |Taylor, Proc. Roy. Soc. A, 219:186-
203,1953]. This paper focused on Poiseuille flow in a circular pipe and
predicted the existence of an effective species diffusion much greater
than molecular diffusion. The ratio between the effective and molecular
diffusion was shown to scale with the square of the Peclet number
(product of the pipe diameter with the mean flow velocity divided by
the molecular diffusivity). Taylor’s study assumed two infinite columns
of miscible fluids initially juxtaposed in a pipe and transported by the
flow. A question of high practical interest is how valid this prediction is
when a finite-sized slug is considered instead of an infinite fluid column.
This paper sheds light on the finite-size effects on the mixing of two
miscible fluids in a slug and quantifies how accurate Taylor’s prediction
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is for finite length liquid columns. Results show that Taylor’s dispersion

C156

formula is most accurate for lower Peclet numbers and longer slugs.

Results also show that mixing is quite insensitive to the Reynolds
number.
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The concept of further miniaturizing a lab-on-a-chip system can potentially
be realized by combining multiple functions using a lab-in-a-tube system
[22]. As reviewed by Smith et al., fluidic manipulation techniques presently
explored could play a pivotal role in future applications of lab-in-a-tube
devices because the reaction time of reagents under testing is paramount
[23, 7]. The study of slug mixing has garnered considerable interest from
researchers. In passive micromixers, mixing can be enhanced using certain
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channel designs that either increase the contact area or the contact time of
liquid, or both [24, 11, 5, 27, 17, 20, 13|. Compared to parallel flow streams,
Burns et al. showed an enhanced mass transfer using slug flows in capillaries
due to the internal circulation within the slugs [6]. Kashid et al. showed
the optimization of liquid slug interfacial area by tuning the dimensions of a
capillary microreactor, which may be used as a technique for enhanced mixing
[15]. The dynamics of a slug falling in a dry and pre-wetted vertical capillary
tube was studied by Bico and Quéré [3] and Chebbi [8]. Self-propulsion of
slugs in a capillary tube was reported for both immiscible |2, 4] and miscible
fluids [21]. In their numerical study, Tanthapanichakoon et al. [25] proposed a
modified Peclet number for enhanced liquid slug mixing. These studies provide
further insights into how effective mixing can be achieved in microfluidics.
For laminar flows, mixing occurs due to molecular diffusion as it would for
quiescent fluid, but flow-enhanced mixing also occurs as described by Taylor
[26]. The latter phenomenon is known as Taylor dispersion, in which shear flow
acts along with diffusion to increase the effective diffusivity. A variation in the
direction of flow causes sharp gradients perpendicular to flow, which is then
smoothed out by diffusion. Taylor’s analysis lead to the well-known formula
for effective diffusivity Dess in a channel given by Degs = D (1 + 4—18P62),
where D is the molecular diffusivity and Pe the Peclet number, a measure of
the strength of convective transport relative to diffusive transport. Though
studies involving Taylor dispersion have been undertaken both experimentally
and numerically for infinite liquid columns [16, 14, 10, 1, 9], we aim in this
paper to assess the validity of Taylor’s effective diffusion concept for a finite
length slug.

2 Numerical model

The slug is assumed to be a body of revolution with length L and diameter W,
with curved menisci at both ends, which meet the wall with a contact angle
O, see Figure 1. The slug is a binary mixture of two miscible, non-reacting
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Figure 1: Illustration of the 2D axisymmetric model showing the slug of
length L, diameter W, and equilibrium contact angle 0. moving with velocity
V. The slug is composed of two miscible liquids in equal proportion.

fluids and it travels in the tube with velocity Vy. The liquid is assumed to
have constant density p and viscosity . The questions of interest are how
long will it take for the two initially separated phases to mix in the slug and
how does this mixing time depend on the slug size and the contact angle? As
it is, the problem is a free boundary problem since it involves a free surface
but we will assume that surface tension is sufficiently strong to make the free
surface non-deformable.

To study the mixing, a 2D axisymmetric slug was modelled in the Single
Phase Flow module of COMSOL Multiphysics. The two miscible fluids are
initially separated but allowed to mix at t = 0. One of the two phases is
solved for using the Transport of Diluted Species in COMSOL. The system is
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solved in a reference frame which moves at the same constant velocity as the
slug. In this reference frame, the slug is therefore static and the wall moves
with an equal and opposite velocity. This model solves for the velocity and
pressure fields based on the Navier-Stokes equation. The latter was made
dimensionless by substituting the appropriate parameters into COMSOL.

The Navier-Stokes equations for an incompressible fluid in dimensionless form
read

§+(7-v)7:—Vp+

1
RV (VV) (1)

V-V =0, (2)

where the coordinates were scaled with the capillary radius R, the flow velocity
with the slug travelling velocity Vi, the pressure with pVZ, time with v%,

and Re = % is the Reynolds number. In COMSOL, which operates in a
dimensional space, the density was set to unity and the viscosity to é.

The menisci were assumed to be a non-deformable interface and a slip bound-
ary condition was imposed there. A no-slip boundary condition was applied
at the wall with a constant upward, axial velocity V;, corresponding to a
downward travelling slug. The pressure was set to zero at the meniscus to
constrain the solver. Consistent stabilization through streamline diffusion
and crosswind diffusion were included to reduce the numerical diffusion as the
solution approaches the exact solution. Streamline diffusion and crosswind
diffusion adds diffusion in the directions along and orthogonal to the flow
velocity, respectively. Linear P1 elements were chosen for both the velocity
and pressure components since they were less prone to introducing oscillations.

The Transport of Diluted Species module of COMSOL Multiphysics was used
to compute the concentration field according to the following dimensionless

transport equation
oc

ot
where the concentration is scaled with cg, the initial concentration of one of

1
—I—V'Vc:ﬁv%, (3)
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the species and Pe = YeR is the Peclet number with D the species’ molecular

D
diffusivity.

The initial condition for the concentration was defined as a step function
that ranges from 0 to 1 at the centre of the slug with a smooth transition
zone that is 4% of the slug length. This transition helps with convergence,
which could be difficult for steep concentration gradients. No flux boundary
condition was imposed on the capillary wall, the axis of symmetry, and the
free surface. It now becomes apparent that the mixing problem only depends
on Re and Pe, the slug aspect ratio %, and the contact angle.

We define the effectiveness of volumetric mixing by the mixing index M.I.
expressed as follows:

2

where Q) is the computational domain and ceq, the equilibrium species
concentration. Since we have defined the concentration as a step function
located half-way through the slug, the concentration at equilibrium will be
0.5.

M.I = EJ (c—cCeq)’ dw , (4)
Q

3 Methodology

By our definition, the effective diffusivity D¢¢s is such that the solution of
the one-dimensional diffusion equation (eq. (5)) with this effective diffusivity
in a reference frame that moves with the slug produces a mixing index varia-
tion, which best matches the one obtained by solving the full axisymmetric
convection-diffusion problem (egs. (1), (2), and (3)). The diffusion problem

is defined as follows 3 3 5
C C
~— = 7 | Dere—= | 5
ot Ox ( r ax> (5)

where x is the dimensionless axial coordinate relative to the lower end of
the slug and D.¢s is a dimensionless diffusion coefficient scaled with the
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characteristic dimensions mentioned above. The following initial and boundary
conditions are assumed:

cx,t=0)=1—H(Hx=1) , (6)

oc oc
&|x:0 - &|x:l - 0 ) (7)

where H is the Heaviside function. The boundary conditions specify zero
concentration flux at either end of the slug. The analytical solution that
satisfies egs. (5), (6), and (7) reads [21]

N 2
L 2 . [(kml k7x kmt
t) = = = R —Des [ — ) t]
c(x,t) ] +kzlk7_[sm( ] )cos( ] )exp( ff’( ] ) ) (8)

where 1; = 1/2. The corresponding mixing index is therefore defined as
Acdx

LrN ) 2
1 2 . (kml k7x k7t
M.I = §J [ E k—ﬂsm < ] ) coS (T) exp <_Deff <T) t)
5 Lk=1
(9)

where A, is the capillary cross-section area. This equation was then imple-
mented and evaluated in MATLAB, with the number of terms in the Fourier
series N set to 100. Note that eq. (9) can be simplified to the following form:

lA. ., [knl kot 2
M.I = E k27tC? sin? ( ] 1) exp <_2Deff (T) t) ; (10)
=1

According to Taylor [26], the mixing of two solutes in a tube can be represented
by an effective diffusion coefficient, D¢¢¢, which combines both molecular
diffusion and dispersion due to convection. Accordingly:

1
Ders =D ([ 14+ —Pe?) . 11
eff <+48e) (11)
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The dimensionless effective diffusion counterpart is expressed as follows:

1 1
Deff,Taylor = P_e (1 + 4_8P62) . (12)

The subscript Taylor is used to emphasize the inclusion of Taylor dispersion,
in addition to molecular diffusion. This equation is key in our study, as it
will be used later to compare with the effective diffusion coefficient obtained
numerically.

The effective diffusion was calculated as follows:

e For a given Re and Pe, the true Mixing Index variation was computed
by running COMSOL. Simulations were run until a “fully mixed state”,
defined arbitrarily as the time when the Mixing Index falls below 2x 1073,
is reached. For a given Pe, we calculate the corresponding value of

DefﬁTayloT-

e This Mixing Index very rapidly follows an exponential decay M.I ~
A exp~ ¢t defined by the decay rate Ac.

e The D¢ value in eq. (9) was then adjusted such that the decay rate
Am for the pure diffusion mixing matches the decay rate A¢ to within
1% Ac.

In essence, this gives us a good approximation of the optimum effective
diffusion coefficient arising from our numerical model, which we shall denote
as Deffnum- To compare how close our numerical model matches Deff 1aytor
we calculated the error defined as

| Deff,Taylor - Deff,num |

€= x 100% . (13)

Deff,Taylor

A representation of our methodology process is shown in Figure 2.
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Figure 2: Methodology flow chart to calculate error between Degfnum and
Deff,Taylor-

4 Results and discussion

Our numerical model was mesh-independent, as we found that different mesh
sizes tested did not impact the mixing index results. The Pe numbers tested
were 0.001, 0.01, 0.1, 10, 100 and 1000. The same set of values were used for
the Re number to test with each Pe number. Therefore, we obtained 36 data
points for analysis in a two-dimensional parameter space. Our results showed
an exponential decay of the mixing index, in which for a given Re number,
mixing is completed sooner when Pe number is smaller. This agrees with
the formula, where a smaller Pe number corresponds to a larger diffusion
coefficient, hence the shorter time to complete mixing. However, mixing
rate is unaffected by the Re number, as our results showed no difference in
mixing time for a given Pe number. These results are shown in Figure 3.
The fact that the effective mixing is only weakly dependent on the Reynolds
number should not come as such a surprise since this is what Taylor dispersion
formula predicts. Moreover, the fact that the Reynolds number only has a
weak effect has also been reported in [19, 18|. Based on our initial conditions,
the numerical results showed that concentration was higher at the top-half of
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Figure 3: Mixing index distribution for (a) various Pe numbers (Re = 0.01),
and (b) various Re numbers (Pe = 0.01), for a slug with L/R = 4 and
0. = 60°.

the tube. However, over time, the concentration becomes homogenous with
a concentration of 0.5 at equilibrium (see Figure 4), which agrees with our
definition of complete mixing. Further, as shown by the arrows in Figure 4, a
recirculation occurred within the slug, where the flow is directed downstream
in the middle of the tube, followed by a change in direction at the meniscus,
which leads to an upstream flow along the wall. The recirculation of liquid
flow enhances mixing by reducing the striation length, i.e. the distance over
which mixing occurs by diffusion [12]. By evaluating the natural logarithm
of the mixing index from t = 0 until it reaches ~ 2 x 1073, the instant when
complete mixing is hereby defined, our fitted linear regression showed an
average R? value of 0.9866. We studied the effect of slug length, and found that
our numerical model yields a better approximation of Deff Tayior for a longer
slug, as shown by the wider area corresponding to lower error percentages
(see Figure 5). Contact angle did not impact the percentage difference, as
shown by our results for a slug of % = 26 (see Figure 6). This suggests that
our model is not sensitive to the change in contact angle, and that the length
of the slug itself plays a more important role for Deff Taytor approximation,
all else equal.
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Figure 4: Velocity field and concentration gradient of a slug (% =4, 0, =60°)
in a capillary tube, with Re = 0.01 and Pe = 10, at (a) t = 0.1, (b) t = 2,

(¢c)t=3,and (d) t = 5.
5 Conclusions

We have developed a dimensionless numerical model that allows for the study
of liquid slug mixing, with the introduction of a concentration gradient. Only
the Re number, the Pe number, and the slug geometrical parameters are
required to perform the study. From our definition of complete mixing, we
showed that a lower Pe number resulted in a shorter mixing time. The
Re number, however, did not affect the mixing time strongly. We then
assessed the validity of Taylor dispersion formula for finite length slugs. The
methodology consisted in finding the effective diffusion coefficient (D et num)
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Figure 5: Surface plots showing the percentage difference between Dess taytor
and Degf nym for (a) % =4, (b) % =12, and (c) % = 26, at a fixed contact
angle of 60°.

of an equivalent one-dimensional, purely diffusive model which best replicate
the mixing index curve of the full model based on the Navier-Stokes and species
transport equations. This effective diffusion coefficient was then compared
to values predicted by Taylor dispersion formula (Deff;aylor). The results
showed that agreement with Taylor dispersion formula is best when (a) the
slug is longer, and (b) the Pe number is low (diffusion-dominated regime),
even if the corresponding Re number is high. The fact that agreement is better
for longer slugs is intuitively sound since Taylor dispersion formula should
apply in the limit of an infinite slug. The effect of the contact angle appeared
minimal for the slug considered here. The ability to better understand
the validity range of Taylor dispersion formula is expected to be useful to



5 Conclusions C167

(a) 6, =30° (b) B, = 60° 100
100+ 100
804 - e 80
AR
—_ i T M‘“‘m\\\‘n
g% : .\‘\“:\“ '“:::33:33:::‘«5& T 80
w 4o = 40
204 - -
: L g
7 160
D & log Re
(c) B, = 75°
140
100
80
— 60
=
w 40 20
20
o
4 ;
2 ~ 4
D "
5 0

2 ’
log Pe 44 log Re

Figure 6: Surface plots showing the percentage difference between Degs taytor
and Degf nym for contact angles (a) 30°, (b) 60°, and (c) 75°, for a slug of
L =26

R

quicky and reliably estimate the mixing time of species in finite length slugs
or droplets. This is of high practical importance in the context of digital
microfluidics, for example, where one often aims to mix chemical reactants in
slugs confined in micro-channels.

Acknowledgements The authors would like to acknowledge the financial
support provided by the Marsden Fund (Grant number UOC1104) adminis-
tered through the Royal Society of New Zealand.



References C168

References

[1] Daniel A Beard. Taylor dispersion of a solute in a microfluidic channel.
Journal of Applied Physics, 89(8):4667-4669, 2001.
doi:10.1063/1.1357462. C157

[2] J Bico and D Quere. Liquid trains in a tube. EPL (Europhysics Letters),
51(5):546, 2000. doi:https://doi.org/10.1209/epl/i2000-00373-4. C156

[3] José Bico and David Quéré. Falling slugs. Journal of colloid and
interface science, 243(1):262-264, 2001.
doi:https://doi.org/10.1006 /jcis.2001.7891. C156

[4] Jose Bico and David Quéré. Self-propelling slugs. Journal of Fluid
Mechanics, 467:101-127, 2002. doi:10.1017/S002211200200126X. C156

[5] Wolfgang Buchegger, Christoph Wagner, Bernhard Lendl, Martin Kraft,
and Michael J Vellekoop. A highly uniform lamination micromixer with
wedge shaped inlet channels for time resolved infrared spectroscopy.
Microfluidics and Nanofluidics, 10(4):889-897, 2011.
doi:10.1007/s10404-010-0722-0. C156

[6] JR Burns and C Ramshaw. The intensification of rapid reactions in

multiphase systems using slug flow in capillaries. Lab on a Chip,
1(1):10-15, 2001. doi:10.1039/B102818A. C156

[7] Brian Carroll and Carlos Hidrovo. Experimental investigation of inertial
mixing in colliding droplets. Heat Transfer Engineering,
34(2-3):120-130, 2013. doi:10.1080/01457632.2013.703087. C156

[8] Rachid Chebbi. Dynamics of viscous slugs fall in dry capillaries.
Journal of Adhesion Science and Technology, 28(16):1655-1660, 2014.
doi:10.1080/01694243.2014.911645. C156

[9] GQ Chen and Zi Wu. Taylor dispersion in a two-zone packed
tube. International Journal of Heat and Mass Transfer, 55(1):43-52, 2012.


https://doi.org/10.1063/1.1357462
https://doi.org/https://doi.org/10.1209/epl/i2000-00373-4
https://doi.org/https://doi.org/10.1006/jcis.2001.7891
https://doi.org/10.1017/S002211200200126X
https://doi.org/10.1007/s10404-010-0722-0
https://doi.org/10.1039/B102818A
https://doi.org/10.1080/01457632.2013.703087
https://doi.org/10.1080/01694243.2014.911645

References C169

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

http://dx.doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2011.08.037
doi:https://doi.org/10.1016 /j.ijheatmasstransfer.2011.08.037. C157

Russell L Detwiler, Harihar Rajaram, and Robert J Glass. Solute
transport in variable-aperture fractures: An investigation of the relative
importance of taylor dispersion and macrodispersion. Water Resources
Research, 36(7):1611-1625, 2000. doi:10.1029/2000WR900036. C157

Roman O Grigoriev, Michael F Schatz, and Vivek Sharma. Chaotic
mixing in microdroplets. Lab on a Chip, 6(10):1369-1372, 2006.
doi:10.1039/B607003E. C156

K Handique and Mark A Burns. Mathematical modeling of drop mixing
in a slit-type microchannel. Journal of Micromechanics and
Microengineering, 11(5):548, 2001.
doi:https://doi.org/10.1088,/0960-1317/11/5/316. C163

Mranal Jain and K Nandakumar. Novel index for micromixing
characterization and comparative analysis. Biomicrofluidics,
4(3):031101, 2010. doi:10.1063/1.3457121. C156

Mark Johnson and Roger D Kamm. Numerical studies of steady flow
dispersion at low dean number in a gently curving tube. Journal of Fluid
Mechanics, 172:329-345, 1986. doi:10.1017/50022112086001763. C157

Madhvanand N Kashid and David W Agar. Hydrodynamics of
liquid-liquid slug flow capillary microreactor: flow regimes, slug size and
pressure drop. Chemical Engineering Journal, 131(1):1-13, 2007.
doi:https://doi.org/10.1016/j.cej.2006.11.020. C156

KP Mayock, JM Tarbell, and JL. Duda. Numerical simulation of solute
dispersion in laminar tube flow. Separation Science and Technology,
15(6):1285-1296, 1980. doi:10.1080,/01496398008068505. C157

Virginie Mengeaud, Jacques Josserand, and Hubert H Girault. Mixing
processes in a zigzag microchannel: finite element simulations and


https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2011.08.037
https://doi.org/10.1029/2000WR900036
https://doi.org/10.1039/B607003E
https://doi.org/https://doi.org/10.1088/0960-1317/11/5/316
https://doi.org/10.1063/1.3457121
https://doi.org/10.1017/S0022112086001763
https://doi.org/https://doi.org/10.1016/j.cej.2006.11.020
https://doi.org/10.1080/01496398008068505

References C170

18]

[19]

[20]

[21]

22]

23]

[24]

optical study. Analytical chemistry, 74(16):4279-4286, 2002.
doi:10.1021 /ac025642e. C156

Metin Muradoglu, Axel Gilinther, and Howard A Stone. A
computational study of axial dispersion in segmented gas-liquid flow.
Physics of Fluids, 19(7):072109, 2007. doi:10.1063/1.2750295. C163

Metin Muradoglu and Howard A Stone. Mixing in a drop moving
through a serpentine channel: A computational study. Physics of Fluids,
17(7):073305, 2005. doi:10.1063/1.1992514. C163

Peter E Neerincx, Roel PJ Denteneer, Sven Peelen, and Han EH Meijer.
Compact mixing using multiple splitting, stretching, and recombining
flows. Macromolecular Materials and Engineering, 296(3-4):349-361,
2011. doi:10.1002/mame.201000338. C156

Mathieu Sellier, Claude Verdier, and Volker Nock. The spontaneous
motion of a slug of miscible liquids in a capillary tube. International
Journal of Nanotechnology, 14(1-6):530-539, 2017.
doi:https://doi.org/10.1504 /IJNT.2017.082475. C156, C161

Elliot J Smith, Wang Xi, Denys Makarov, Ingolf Ménch, Stefan
Harazim, Vladimir A Bolanos Quinones, Christine K Schmidt, Yongfeng
Mei, Samuel Sanchez, and Oliver G Schmidt. Lab-in-a-tube:
ultracompact components for on-chip capture and detection of
individual micro-/nanoorganisms. Lab on a Chip, 12(11):1917-1931,
2012. doi:10.1039/C2LC21175K. C156

Howard A Stone, Abraham D Stroock, and Armand Ajdari. Engineering
flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rewv.
Fluid Mech., 36:381-411, 2004.

doi:10.1146 /annurev.fluid.36.050802.122124. C156

Abraham D Stroock, Stephan KW Dertinger, Armand Ajdari, Igor
Mezi¢, Howard A Stone, and George M Whitesides. Chaotic mixer for


https://doi.org/10.1021/ac025642e
https://doi.org/10.1063/1.2750295
https://doi.org/10.1063/1.1992514
https://doi.org/10.1002/mame.201000338
https://doi.org/https://doi.org/10.1504/IJNT.2017.082475
https://doi.org/10.1039/C2LC21175K
https://doi.org/10.1146/annurev.fluid.36.050802.122124

References C171

[25]

[26]

27]

microchannels. Science, 295(5555):647-651, 2002.
doi:10.1126 /science.1066238. C156

Wiroon Tanthapanichakoon, Nobuaki Aoki, Kazuo Matsuyama, and
Kazuhiro Mae. Design of mixing in microfluidic liquid slugs based on a
new dimensionless number for precise reaction and mixing operations.
Chemical Engineering Science, 61(13):4220-4232, 2006.
doi:https://doi.org/10.1016/j.ces.2006.01.047. C156

Geoffrey Taylor. Dispersion of soluble matter in solvent flowing slowly
through a tube. In Proceedings of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences, volume 219, pages
186-203. The Royal Society, 1953. doi:10.1098 /rspa.1953.0139. C157,
C161

Terje Tofteberg, Maciej Skolimowski, Erik Andreassen, and Oliver
Geschke. A novel passive micromixer: lamination in a planar channel
system. Microfluidics and Nanofluidics, 8(2):209-215, 2010.
doi:10.1007/s10404-009-0456-z. C156

Author addresses

1. V Ng, Department of Mechanical Engineering, University of

Canterbury, Private Bag 4800, Christchurch 8140, NEW ZEALAND.

2. M Sellier, Department of Mechanical Engineering, University of

Canterbury, Private Bag 4800, Christchurch 8140, NEW ZEALAND.
mailto:mathieu.sellier@canterbury.ac.nz


https://doi.org/10.1126/science.1066238
https://doi.org/https://doi.org/10.1016/j.ces.2006.01.047
https://doi.org/10.1098/rspa.1953.0139
https://doi.org/10.1007/s10404-009-0456-z
mailto:mathieu.sellier@canterbury.ac.nz

	Introduction
	Numerical model
	Methodology
	Results and discussion
	Conclusions
	References

