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Abstract

Despite the widespread acknowledgement of the need for graduates
with quantitative problem-solving skills, many students enter university
having relied heavily on pattern recognition techniques for high school
mathematics. While these can often lead students to obtaining correct
solutions for problems similar to those which they have practised, they
do not lead to a deeper understanding of the material and, critically, may
not develop more widely-applicable skills. Even when correct solutions
are obtained, students can sometimes not understand or explain why
their solution is indeed correct. Here, I present an argument in favour of
avoiding predictability in question structures and, in particular, asking
questions “backwards” to how they might traditionally be asked. Some
mathematical topics readily lend themselves to such approaches — the
Fundamental Theorem of Calculus tells us that an integral problem is
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inherently linked to an antiderivative problem — whereas other require
much more care and subtlety to avoid routine or predictable assessments.
I will discuss some preliminary results from a first year probability
subject at the University of Technology Sydney (UTS) which suggest
that student understanding of material can be increased when they feel
that prioritising pattern recognition over problem solving is unlikely to
be rewarded with high marks.

Subject class: 97U40

Keywords: Mathematics Education; Assessment

Contents
1 Introduction C144

2 Discussion C146

3 Results C149

4 Conclusions C151

References C152

1 Introduction

The development of quantitative problem-solving skills has been identified by
the Office of the Chief Scientist as being a national priority, recognising “the
critical role they have in ensuring the continued prosperity of Australia” [3].
Despite this, many students’ primary learning strategies for mathematics are
founded in pattern recognition techniques [9, 13]. That is, they prioritise
learning routines for questions in the belief that those on which they will
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be assessed may be very similar to those for which they have already seen
solutions. This can lead to a situation whereby students may be able to
correctly answer questions on material but have minimal understanding of
why their remembered routine works or how it might need to be adapted to
address less similar problems [11].

There are many reasons for this. Some of these study habits are formed in
high school, when pressured to cover a large number of topics quickly with
the aim of maximising performance in exams for university admission. From
the perspective of university curriculum development, such issues cannot
easily be addressed. There are, however, approaches which can minimise the
effectiveness of such shallow learning techniques and, I would argue, encourage
greater engagement with understanding of mathematics and original enquiry
than with rote learning [14, 12].

One major issue which can be readily addressed with a more careful approach
to undergraduate learning and assessment is avoiding unnecessary predictabil-
ity in question formulation. Many leading textbooks will ask all questions
on certain topics from the same approach. That is, these questions are all
essentially the same routine or argument, albeit with different numbers and
perhaps a different context.

For the purpose of this study, I will characterise questions on a mathemati-
cal topic into being asked either forwards or backwards. A question asked
forwards is defined as one for which a well-defined problem is posed for
which there is a single correct answer. Most questions which arise, either
in a real-world context or from a textbook problem are forwards problems.
These are important in instilling routines of mathematical solution to stu-
dents. In many cases, however, the solution can be recalled as a pattern of
steps, even if the underlying reason or logic behind those steps is not fully
comprehended [8]. The other category of question, a backwards problem,
is defined as one for which there may be multiple correct answers whereby
the student has to demonstrate a much broader understanding of the topic,
often having to display comprehension of multiple mathematical ideas to
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produce a correct solution. As such, backwards questions are, in general, both
inverse problems [6] and also open questions [15] and hence blend many of
the well-studied benefits [2] of both educational approaches.

There are, of course, topics in a common mathematics syllabus which lend
themselves easily to both forwards and backwards approaches. For example,
when learning basic differentiation, this is often accompanied by solving simple
differential equations by inspection. This is effectively giving students the
result of having differentiated a given function and asking them what form
the original undifferentiated function must have taken. Many other topics,
however, require a more creative and novel approach to problem formula-
tion than is sometimes displayed to ensure that students are encouraged to
understand problems more fully than by simply remembering one routine.

2 Discussion

As previously mentioned, one issue is that, for many topics, leading textbooks
and available educational resources formulate the vast majority — if not all —
problems on a topic in a similar fashion. That is to say that all questions are
asked in a forwards direction. As this project draws upon student data from
a first year probability subject, I will focus primarily on this discipline area.

Consider the example of assessing a student’s understanding of the expectation
of a discrete random variable. The vast majority of questions set on this
topic will give a valid probability mass function and assess whether or not
the student knows that the expectation is calculated via a weighted sum of
each possible value of the variable with weights equal to the probabilities of
each outcome. Indeed, using the freely-available resources on this topic on
the Khan Academy website [1] (as of November 2017), there are ten such
questions on this topic and all ten are identical in structure and would be
classified here as forwards questions. While such resources are unquestionably
useful for developing the most commonly-required routines for solutions, they
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nonetheless risk students developing shallow understanding which may be
reinforced by frequently obtaining correct solutions without understanding
the topic completely.

Keeping with the example of assessing a student’s understanding of the
expectation of a discrete random variable, such forwards questions only
assesses whether a student can remember and implement the fact that, for
a random variable X with probability mass function fX, the expectation of
this variable E(X) =

∑
k

kfX(k).

Consider the case of two students, one with only superficial understanding of
random variables and the other with a more complete understanding. Given
a discrete random variable X with well-defined probability mass function

fX(k) = P(X = k) =


0.8 k = 1,

0.2 k = 3,

0 otherwise,

both students may be able to answer that E(X) = (1× 0.8) + (3× 0.2) = 1.4.
If, however, the problem is not well-defined and has a meaningless invalid
probability mass function, say,

fX(k) = P(X = k) =


1.1 k = 1,

−0.1 k = 3,

0 otherwise,

the student who fully understands the topic may note that this is meaningless,
whereas the student with superficial understanding may well implement the
remembered formula and state that E(X) = (1× 1.1) + (3×−0.1) = 0.8.

By reversing the question, and asking the student to give an example of
a probability mass function which has a given expectation, an assessor is able
to gain considerably deeper insight into a student’s understanding of this
topic. The student needs not only to display an understanding of how to
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calculate an expectation, but also what constitutes a valid probability mass
function and how to write one correctly. Table 1 compares the understanding
required to answer both a forwards and backwards question.

Table 1: Comparison of required topic understanding for answering a question
on discrete probability mass functions and the associated expectation of their
random variables. The first column is a more traditional question approach
and the second column is for the backwards question.

Question
“Given probability
mass function fX,
calculate E(X)”

“Write down a possible
probability mass

function fX such that
E(X) =. . . ”

Recollection and implemen-
tation of E(X) =

∑
k

kfX(k) REQUIRED REQUIRED

Understanding that random
variable is discrete, hence
probability mass function,
not a continuous density
function

IMPLICITLY GIVEN
BY QUESTION

REQUIRED

Understanding that probabil-
ity mass function is always
non-negative i.e. fX(k) > 0
for all k ∈ R.

IMPLICITLY GIVEN
BY QUESTION

REQUIRED

Understanding that probabil-
ity mass function must sum
to one i.e.

∑
k

fX(k) = 1

IMPLICITLY GIVEN
BY QUESTION REQUIRED
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3 Results

To assess whether backwards questions can more accurately capture students’
deeper understanding of mathematical material, a small pilot study was
undertaken in a first year undergraduate subject delivered at UTS. For
each of five topic areas, 83 students were asked to self-identify their own
level of understanding of that topic. Each was asked to self-assess his/her
understanding of each topic into one of the four categories, presented as
below:
4 = “I believe I understand this topic fully and can correctly answer all or

almost all questions on it.”

3 = “I believe can correctly answer all or almost all questions on this topic,
but don’t fully understand the theory.”

2 = “I believe I understand some of the theory and can answer some questions
correctly.”

1 = “I struggle to answer questions on this topic correctly.”

Responses for this survey were carried out after students had already at-
tempted two forwards questions (and seen whether or not their work had been
marked as correct) but before attempting one additional backwards question.

The most major limitation with this is the small sample size. With 83 student
responses for each of 5 topics, with 3 categories for forward questions, 2 for
backwards questions and 4 for the self-stated understanding, there are far too
few observations to fit all possible models. This would require a 5 way (83 by 5
by 3 by 2 by 4) contingency table, but would have many extremely small
expected counts, with some almost certainly zero. For example, unsurprisingly,
there were no students who got both forwards questions and the backwards
question correct, yet self-identified as having the lowest possible level of
understanding of a given topic. Even merging some cells would not be
sufficient to properly assess all marginal and conditional dependence models.
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Tests for independence between variables were conducted using the G-test [10]
with appropriate degrees of freedom. Initially, I collapsed the data on the
student and understanding variables and tested for evidence of associations
between performance on the forward questions, backwards question and the
topic. The saturated model was rejected (G2 ≈ 59.98, χ222(59.98) < 0.0001)
as were those with independence of forward and backwards results, both
controlling (G2 ≈ 47.22, χ210(47.22) < 0.0001) and not controlling for topic
(G2 ≈ 40.06, χ22(40.06) < 0.0001.) Unsurprisingly, this suggested that there
was an association between the number of forwards questions a student
had answered correctly and whether or not he/she correctly answered the
backwards question. Furthermore, the five topics were seemingly of similar
difficulty.

When looking for associations between answering backwards questions and
understanding, many categories had to be combined. The data were collapsed
on the student and topic variables. Analysing the resulting 3 (forwards) by 2
(backwards) by 4 (understanding) contingency table, all models of indepen-
dence were rejected — the saturated model, all three partial independence
models and all three marginal models all gave G2 statistics corresponding to
p-values < 0.005.) This gives that, even when controlling for level of perfor-
mance on the forwards questions, a student’s performance on the backwards
question is not independent of his/her topic understanding. Critically, this
suggests that a student’s ability to answer these conceptually-harder questions
correctly is significantly correlated to his/her topic understanding.

It should be noted that the contingency table for this has 4 of its 24 cells
with expected counts below 5. It is often suggested that, when using the
Pearson statistic for such situations, no more than 20% of cells should have
such low counts [7], and ideally many fewer than that. Use of the G-statistic
is preferred in this situation [4]. In any case, combining the lowest two
categories of understanding, 1 and 2, got around this issue and did not change
the conclusion. The original uncombined data have been presented here.
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Table 2: Data for number of students organised by their self-stated level of
topic understanding (1, 2, 3 or 4), plus by the number of forwards (zero, one
or two) questions and the number of backwards (zero or one) questions they
answered correctly. In brackets are the expected cell counts under the null
model of complete independence (to 2 decimal places.)

Understanding 1 2 3 4
Backwards Backwards Backwards Backwards
Zero One Zero One Zero One Zero One

Zero
24 0 26 3 23 6 21 3

(6.60) (2.15) (13.59) (4.43) (37.58) (12.25) (25.19) (8.21)

Forwards One
8 0 18 5 71 13 41 15

(10.68) (3.48) (22.00) (7.17) (60.81) (19.82) (40.76) (13.28)

Two
1 0 2 2 50 25 15 31

(7.62) (2.48) (15.69) (5.11) (43.39) (14.14) (29.08) (9.48)

4 Conclusions

Although the quantitative analyses presented here are relatively small in scope,
some striking findings stand out. It has to be acknowledged, of course, that
reliance upon students’ self-identified understanding is less than ideal, as it is
well-documented that there are often inherent biases in such evaluations [5].
Despite these limitations, it is interesting to note that many students are able
to accurately tell the difference between having fully mastered material and
merely being able to answer questions on it, despite incomplete understanding.

Consider the comparison of the students who believe they can answer most
questions correctly, but who may or may not state that they fully understand
the underlying mathematical theory. Controlling for the level of performance
on the two backwards questions, a student was more than twice as likely
to answer the backwards question correctly if he/she had stated level 4 of
understanding, compared to only level 3. The implication of this is that, if
questions are only ever asked forwards, an assessor may fail to differentiate
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between a student with complete understanding of the concepts and one who
has mastered or memorised a routine, but with incomplete understanding
of why he/she is performing the calculations. This is not simply an issue of
assessment or fair allocation of marks. If students know that all questions will
be asked in a similar fashion, many may not feel incentivised to understand the
material fully when partially-understood rote learnt routines may well suffice
for maximum marks. Few would believe that this is a desirable outcome.
I would argue that, if the primary purpose of assessment is to encourage and
reward deeper comprehension of mathematical concepts, then less traditionally
structured backwards questions may well achieve this outcome for more
students than for those tested purely on forwards questions. The challenge,
therefore, is on educators and assessors to be more creative and less predictable
in problem formulation and examination.
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