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Abstract

In this paper, we consider an optimal control problem governed by
elliptic differential equations posed in a three-field formulation. Using
the gradient as a new unknown we write a weak equation for the
gradient using a Lagrange multiplier. We use a biorthogonal system to
discretise the gradient, which leads to a very efficient numerical scheme.
A numerical example is presented to demonstrate the convergence of
the finite element approach.

Subject class: 49J20, 65L20

Keywords: Optimal control; biorthogonal system; a priori error esti-
mates

doi:10.21914/anziamj.v59i0.12643, c© Austral. Mathematical Soc. 2018. Published
July 3, 2018, as part of the Proceedings of the 13th Biennial Engineering Mathematics and
Applications Conference. issn 1445-8810. (Print two pages per sheet of paper.) Copies of
this article must not be made otherwise available on the internet; instead link directly to
the doi for this article.

https://doi.org/10.21914/anziamj.v59i0.12643


Contents C98

Contents
1 Introduction C98

2 Finite element method C101

3 Variational discretisation: error estimates C104

4 Numerical results C108

References C109

1 Introduction

The cost functional of an optimal control problem governed by a partial
differential equation often involves the solution as well as the gradient of the
solution. In that situation, a better approximation of the gradient is obtained
by using a mixed finite element method [1]. Recently, mixed finite element
approaches have become quite popular to discretise optimal control problems
involving elliptic partial differential equations [3–5].

In this paper, we apply a mixed finite element method to approximate
the solution of an optimal control problem governed by a Poisson problem.
In contrast to previous approaches [3–5], which are based on a two-field
formulation of the Poisson problem, we use a three-field formulation of
the Poisson problem which allows us to use a biorthogonal system in the
discretisation. The use of a biorthogonal system allows us to statically
condense out all the extra degrees of freedom we have in the mixed formulation
leading to a very efficient finite element approach. The formulation is obtained
by introducing the gradient of the solution of Poisson equation as a new
unknown and writing an additional variational equation in terms of a Lagrange
multiplier. An efficient numerical scheme is obtained by using a biorthogonal
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system to discretise the space of the gradient of the solution and the Lagrange
multiplier space in the discrete setting.

Let Ω be a bounded and convex domain in R2 and Γ the boundary of Ω. In
the following we use the usual notations for the Sobolev space Hk(Ω) for
positive integer k, and the associated norm on Hk(Ω) with L2(Ω) = H0(Ω)
denoting the set of all real-valued square integrable functions defined on Ω [2].
Let α ∈ R be a parameter, yd ∈ L2(Ω) the desired state and σd ∈ [L2(Ω)]2

the desired gradient. Consider the following optimal control problem

min
u∈Uad

J(y,u) :=
1

2
‖y− yd‖20,Ω +

1

2
‖σ− σd‖20,Ω +

α

2
‖u‖20,Ω, σ = ∇y, (1)

subject to the partial differential equation

−∇ · K∇y = Bu+ f in Ω with y = 0 on Γ , (2)

where K ∈ L∞(Ω,R2×2) is a real-valued, symmetric and positive definite
matrix, and B is the bounded linear operator defined on the set of admissible
set of controls Uad

Uad =
{
u ∈ L2(Ω) : ‖u‖0,Ω 6M

}
,

so that for some positive constant b

‖Bu‖0,Ω 6 b‖u‖0,Ω, u ∈ Uad.

The existence and uniqueness of the optimal control follows from the strict
convexity [13]. Using B∗ as the adjoint operator of B the first order optimality
condition can be formulated as

(αu+ B∗p, v− u) > 0, v ∈ Uad, (3)

where p is the adjoint state associated with u and it solves the following
adjoint equation of finding p ∈ H1

0(Ω) such that∫
Ω

[K∇p · ∇q+ (∇y− σd) · ∇q+ (y− yd)q]dx = 0, q ∈ H1
0(Ω). (4)
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The variational inequality in equation (3) can be written as

u(x) = P[−M,M]

(
−
B∗p

α

)
,

where [12,13]
P[a,b](f(x)) = max(a, min(b, f(x))).

We start with the following variational form of (2) to recast our problem as a
three-field formulation:

min
y∈H1

0(Ω)

1

2

∫
Ω

K∇y · ∇ydx−
∫
Ω

(f+ Bu)ydx, (5)

and introduce the gradient of the state of the system as a new unknown
σ = ∇y, and write its weak equation as∫

Ω

(σ−5y) ·ψdx = 0, ψ ∈ [L2(Ω)]2,

where ψ acts as a Lagrange multiplier. Using V = H1
0(Ω), R = [L2(Ω)]2, and

`(y) =
∫
Ω
(f+ Bu)ydx, we get a constrained minimisation problem, which

leads to the following saddle point problem of finding (y,σ,φ) ∈ V × R× R
such that

ã((y,σ), (z, τ))+ b((z, τ),φ) = `(z), (z, τ) ∈ V × R,
b((y,σ),ψ) = 0, ψ ∈ R, (6)

where

ã((y,σ), (z, τ)) =

∫
Ω

Kσ · τ dx, b((y,σ),ψ) =

∫
Ω

(σ−∇y) ·ψdx.

Thus our optimal control problem is to find (y,σ,φ,u) ∈ V × R× R×Uad
such that (6) is satisfied as well as the inequality (3), where p = ỹ in (3) is
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one field in the problem of finding three fields (ỹ, σ̃, φ̃) ∈ V ×R×R such that∫
Ω

φ̃ · ∇z dx−
∫
Ω

(y− yd)z dx = 0, z ∈ V , (7)∫
Ω

(Kσ̃+ φ̃) · τdx+
∫
Ω

(σ− σd) · τdx = 0, τ ∈ R, (8)∫
Ω

(σ̃−∇ỹ) ·ψdx = 0, ψ ∈ R. (9)

Here the adjoint equations are derived from the Euler-Lagrange equations of
the following minimisation problem

argmin
(ỹ,σ̃)∈[V×R]

(
1

2

∫
Ω

Kσ̃ · σ̃ dx− ˜̀(ỹ, σ̃)

)
, (10)

under the constraint ∫
Ω

(σ̃−∇ỹ) ·ψdx = 0, ψ ∈ R,

where
˜̀(ỹ, σ̃) =

∫
Ω

(yd − y) ỹ dx−

∫
Ω

(σ− σd) · σ̃ dx.

To get a stable discrete formulation we replace the bilinear form ã(·, ·) by the
bilinear form a(·, ·) [6] defined as

a((y,σ), (z, τ)) =
1

2

∫
Ω

(Kσ · τ+ K∇y · ∇z) dx.

2 Finite element method

Let Th be a quasi-uniform partition of the domain Ω in triangles. We use
the standard linear finite element space on the mesh Th defined as

Sh = {zh ∈ H1(Ω) : zh|T ∈ P1(T), T ∈ Th}, Vh = Sh ∩H1
0(Ω),
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where P1(T) is the space of linear polynomials in T [2].

Let {ϕ1,ϕ2, · · · ,ϕN} be the finite element basis for Sh. We now construct a
set of basis functions {µ1,µ2, · · · ,µN} of another finite element space Wh so
that the basis functions of Sh and Wh satisfy a condition of biorthogonality
relation ∫

Ω

ϕiµj dx = cjδij, cj 6= 0, 1 6 i, j,6 N, (11)

where δij is the Kronecker symbol, and cj a scaling factor [10]. Hence the
sets of basis functions of Sh and Wh form a biorthogonal system. The finite
element space for the gradient of the solution is

Lh = [Sh]
2 ,

and for the Lagrange multiplier is

Mh = [Wh]
2 .

Our discrete problem is to find (yh,σh,ϕh) ∈ Vh × Lh ×Mh such that

a ((yh,σh) , (zh, τh)) + b ((zh, τh) ,ϕh) = ` (zh) , (zh, τh) ∈ Vh × Lh,
b ((yh,σh) ,ψh) = 0, ψh ∈ Mh,

(12)

We now introduce a projection operator Qh : L2(Ω)→ Sh defined as∫
Ω

Qhv µh dx =

∫
Ω

vµh dx, µh ∈Wh, v ∈ L2(Ω).

Due to the biorthogonality relation (11), Qh is well-defined, and Qhv for
v ∈ L2(Ω) is given by

Qhv =

n∑
i=1

∫
Ω
µi v dx

ci
ϕi.

Using the notation that Qh is applied component-wise when applied to a
vector function the second equation of (12) leads to σh = Qh(∇yh). Hence
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static condensation of the gradient of the solution and the Lagrange multiplier
leads to the following problem of finding yh ∈ Vh such that

Ah(yh, zh) = `(zh), zh ∈ Vh,

where

Ah(yh, zh) =
1

2

(∫
Ω

KQh∇yh ·Qh∇zh dx+
∫
Ω

K∇yh · ∇zh dx
)
.

Using the same approach to discretise the adjoint equations (7) – (9) we have
the problem of finding (ỹh, σ̃h, φ̃h) ∈ Vh × Lh ×Mh such that

∫
Ω

φ̃h · ∇zh dx−
∫
Ω

(yh − yd)zh dx = 0, zh ∈ Vh, (13)∫
Ω

(Kσ̃h + φ̃h) · τh dx+
∫
Ω

(σh − σd) · τh dx = 0, τh ∈ Lh, (14)∫
Ω

(σ̃h −∇ỹh) ·ψh dx = 0, ψ ∈Mh. (15)

We note that (15) leads to σ̃h = Qh∇ỹh. Using this and setting ph = ỹh, we
arrive at the problem of finding ph ∈ Vh such that for all qh ∈ Vh we have∫

Ω

(KQh∇ph) · (Qh∇qh)dx =
∫
Ω

(yd − yh)qh dx

−

∫
Ω

(Qh∇yh − σd) · (Qh∇qh)dx.

Using the same stabilisation approach as for the state variable, we now obtain
the equation of finding ph ∈ Vh such that

Ah(ph,qh) =

∫
Ω

(yd−yh)qh dx−

∫
Ω

(Qh∇yh−σd)·(Qh∇qh)dx, qh ∈ Vh.
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3 Variational discretisation: error estimates

Now we consider the discrete formulation of the state and adjoint state equa-
tions where the control u is not discretized initially but given by a projection
formula (18) [12, 13]. The discrete problem is then to find (yh,ph,uh) ∈
Vh × Vh ×Uad such that

Ah(yh, zh) = (Buh + f, zh), zh ∈ Vh, (16)
Ah(ph,qh) = (yd − yh,qh) − (Qh∇yh − σd,Qh∇qh), qh ∈ Vh,(17)

uh = −P[a,b]

(
B∗ph

α

)
. (18)

where the bilinear form Ah(·, ·) satisfies the following continuity and coercivity
properties with respect to the H1-norm for two positive constants α and β
independent of h:

(i) Ah(φh,ψh) 6 α‖φh‖1,Ω‖ψh‖1,Ω, φh,ψh ∈ Vh.

(ii) Ah(φh,φh) > β‖φh‖21,Ω, φh ∈ Vh.

Since Qh is stable in H1 and L2-norms [10], and B is bounded, the right hand
sides of both variational equations (16) and (17) are continuous. Thus both
variational equations (16) and (17) have unique solutions by Lax-Milgram
lemma. We note that the variational inequality

(αuh + B
∗ph, v− uh) > 0, v ∈ Uad,

for the control uh is replaced by the projection formula (18).

For a fixed u, let yh(u) be the solution of

Ah(yh(u), zh) = (Bu+ f, zh), zh ∈ Vh, (19)

and for a fixed y, let ph(y) be the solution of

Ah(ph(y),qh) = (yd − y,qh) − (Qh∇y− σd,Qh∇qh), qh ∈ Vh.(20)
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Then under the assumption that the domainΩ is convex, we have the following
approximation results for the solutions of the discrete equations (19) and
(20).

Theorem 1. Let yh(u) and ph(y) be the solutions of (19) and (20) respec-
tively. Then there exists a constant C, independent of h, such that

‖y− yh(u)‖0,Ω + h‖y− yh(u)‖1,Ω 6 Ch2‖y‖2,Ω (21)
‖p− ph(y)‖0,Ω + h‖p− ph(y)‖1,Ω 6 Ch2‖p‖2,Ω. (22)

Setting yh = yh(uh) and ph = ph(yh), we have the following result.

Lemma 2. Let yh(u) and ph(y) be the solutions of (19) and (20) respectively.
Then there exists a constant C, independent of h, such that

‖yh(u) − yh‖1,Ω 6 C‖u− uh‖0,Ω
‖ph(y) − ph‖1,Ω 6 C‖y− yh‖0,Ω.

The proof of this lemma follows from the coercivity of Ah(·, ·) [11, Lemma
3.1].

Theorem 3. Let (y,p,u) ∈ (H2(Ω)∩H1
0(Ω))×(H2(Ω)∩H1

0(Ω))×Uad be the
solutions of (1) and (2) with u ∈ H1(Ω), and (yh,ph,uh) ∈ Vh×Vh×Uad
be the solutions of (16)–(18). Then for sufficiently small h there exists a
mesh-independent constant C such that

‖u− uh‖0,Ω 6 Ch, ‖y− yh‖0,Ω 6 Ch, ‖p− ph‖0,Ω 6 Ch. (23)

Proof: From the optimality condition, we get

α‖u− uh‖20,Ω 6 (p− ph,B(uh − u))

= (p− ph(y),B(uh − u)) + (ph(y) − ph,B(uh − u)).

From (19), we have

Ah(yh − yh(u), zh) = (B(uh − u), zh).
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Setting zh = ph(y) − ph we get from the above equation

Ah(yh − yh(u),ph(y) − ph) = (B(uh − u),ph(y) − ph).

Thus

α‖u− uh‖20,Ω 6(p− ph(y),B(uh − u)) (24)
+Ah(ph(y) − ph,yh − yh(u)). (25)

From (20), we get

Ah(ph(y) − ph,qh) = (yh − y,qh) − (Qh(∇y−∇yh),Qh∇qh).

We now use qh = yh(u) − yh in the above equation to write

Ah(ph(y) − ph,yh(u) − yh)

= (yh − y,yh(u) − yh) − (Qh∇(y− yh),Qh∇(yh(u) − yh))
= (yh(u) − y,yh(u) − yh) − (yh(u) − yh,yh(u) − yh)

−(Qh∇(y− yh(u)),Qh∇(yh(u) − yh))
+(Qh∇(yh − yh(u)),Qh∇(yh(u) − yh))

= (yh(u) − y,yh − yh(u)) − ‖yh(u) − yh‖20,Ω
+(Qh∇(y− yh(u)),Qh∇(yh − yh(u))) − ‖Qh∇(yh − yh(u)‖20,Ω

6 C‖y− yh(u)‖1,Ω‖yh − yh(u)‖1,Ω
6 Ch‖y‖2,Ω‖u− uh‖0,Ω,

where we use the L2 stability of Qh, Theorem 1 and Lemma 2. Now we
use the above estimate for the second term on the right of (24) and use the
following estimate for the first term on the right of (24)

|(p− ph(y),B(uh − u))| 6 Ch
2‖u− uh‖0,Ω‖p‖2,Ω,

to write (24) as

α‖u− uh‖20,Ω 6 Ch2‖p‖2,Ω‖u− uh‖0,Ω + Ch‖y‖2,Ω‖u− uh‖0,Ω,
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which yields

‖u− uh‖0,Ω 6 C(h2‖p‖2,Ω + h‖y‖2,Ω).

In order to estimate ‖y− yh‖0,Ω, we start with

‖y− yh‖0,Ω 6 ‖y− yh(u)‖0,Ω + ‖yh(u) − yh‖0,Ω.

For the first term on the right of the above estimate we have ‖y−yh(u)‖0,Ω 6
Ch2‖y‖2,Ω, and for the second term on the right we use Lemma 2 to write

‖yh(u) − yh‖0,Ω 6 C‖yh(u) − yh‖1,Ω 6 C‖u− uh‖0,Ω.

Now the result follows using the estimate for ‖u − uh‖0,Ω. Similarly, to
estimate ‖p− ph‖0,Ω, we use the triangle inequality and write

‖p− ph‖0,Ω 6 ‖p− ph(y)‖0,Ω + ‖ph(y) − ph‖0,Ω.

Since ‖p−ph(y)‖0,Ω 6 Ch2‖p‖2,Ω, we estimate the second term on the right
side of the above estimate by using Lemma 2 to get

‖ph(y) − ph‖0,Ω 6 C‖ph(y) − ph‖1,Ω 6 C‖y− yh‖0,Ω.

The final result follows on using the estimate for ‖y− yh‖0,Ω. ♠

Remark 4. Using the standard saddle point theory [1] we have the following
error estimate for the error in the gradient σ = ∇y:

‖σ− σh‖0,Ω 6 Ch,

where σh = Qh∇yh with y and yh as defined in the above theorem.
Remark 5. The approach based on a biorthogonal system can be easily
extended to a three-dimensional problem and other elliptic partial differential
equations [7–9].
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Figure 1: L2 errors for the state y and adjoint p (left), H1 errors for the state
y and the adjoint p (middle) and L2 errors for the control u and the gradient
σ (right) versus the number of elements

4 Numerical results

In this section, we present a numerical example to support the error estimates
proved in the last section. We have used the primal dual active set strategy
to compute the solution of the discrete formulation [13]. Let Ω = [0, 1]2 with
the boundary Γ . We consider the following problem

min
u∈Uad

J(y,u) =
1

2
‖y− yd‖20,Ω +

1

2
‖σ− σd‖20,Ω +

1

2
‖u‖20,Ω

subject to

−∆y = u in Ω with y = 0 in Γ ,

where the exact solution for the state y = sin(πx1) sin(πx2), the adjoint
state p = 2π2 sin(πx1) sin(πx2), and the control u = max(a, min(b,p)) with
a = −25, b = 25. The desired states yd and σd are taken as

yd = sin(πx1) sin(πx2),

σd =
[
(π+ 2π3) cos(πx1) sin(πx2), (π+ 2π3) sin(πx1) cos(πx2)

]
.

We have shown the errors for the state y, adjoint state p, the control u and
the gradient σ in Figure 1. We can see the convergence rates as predicted
by the theory. The convergence rates for the gradient σ are very close to 1.5,
which is better than the expected rate.
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