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Abstract

We modify a three-field formulation of the Poisson problem with
Nitsche approach for approximating Dirichlet boundary conditions.
Nitsche approach allows us to weakly impose Dirichlet boundary condi-
tion but still preserves the optimal convergence. We use a biorthogonal
system for efficient numerical computation and introduce a stabilisation
term so that the problem is coercive on the whole space. Numerical
examples are presented to verify the algebraic formulation of the prob-
lem.
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1 Introduction

The finite element method is a powerful and efficient method to handle com-
plicated geometries and impose the associated boundary conditions. However,
in some cases, the treatment of the Dirichlet-type boundary conditions com-
promise the stability and accuracy of the standard finite element method [12].

In order to relax the Dirichlet boundary condition constraint, we need to
modify the standard finite element approach. Generally, we can do this by
imposing the Dirichlet boundary condition as a penalty term [1, 2]. One of
such methods is Nitsche’s method [15], which imposes the Dirichlet boundary
condition weakly in the formulation without the need of a Lagrange multiplier.
Moreover, compared to other penalty method, Nitsche’s method adds the
consistency, symmetry and stability terms so that this method can achieve
optimal convergence. There are so many applications of Nitsche’s method in
many areas, such as elasticity [3], interface problems [7], potential flows [10]
and plasticity [16].
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Nitsche approach for a mixed finite element method for the Poisson problem
has been proposed earlier [6, 11] using a two-field formulation, which is not
suitable for the approach with a biorthogonal system. In this article, we modify
a mixed finite element method, based on the three-field formulation [8], with
Nitsche approach to solve a Poisson problem. A similar three-field formulation,
known as Hu-Washizu formulation, is popular in linear elasticity field [13].
The three-field formulation allows us to apply a biorthogonal system which
leads to a very efficient finite element method. In order to overcome the
difficulty of coercivity condition, we introduce a stabilisation term [8] of the
associated bilinear form so that it is coercive on the whole space.

2 A Three-field Formulation for Poisson
Problem

Sobolev Spaces

Let V = H1 (Ω) and L = [L2 (Ω)]
2. The Sobolev spaces Hk (S) for S ⊂ Ω or

S ⊂ Γ , and k > 0 are defined in the standard way [5]. We introduce the space
H−1/2 (Γ), the dual space of H1/2 (Ω), with the norm

‖µ‖−1/2,Γ = sup
z∈H1/2(Γ)

〈µ, z〉
‖z‖1/2,Γ

,

where 〈·, ·〉 denotes the duality pairing. For functions v ∈ H1 (Ω) with
∆v ∈ L2 (Ω), it holds [2] ∂v

∂n
∈ H−1/2 (Γ) with∥∥∥∥∂u∂n

∥∥∥∥
−1/2,Γ

6 C (‖v‖1 + ‖∆v‖0) .
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We will also introduce the mesh-dependent norms

‖v‖21/2,h =
∑ 1

he
‖v‖20,e for v ∈ H1 (Ω) ,

‖z‖2−1/2,h =
∑

he ‖z‖20,e for z ∈ L2 (Γ) ,

and for these norms it holds

〈v, z〉 6 ‖v‖1/2,h ‖z‖−1/2,h for (v, z) ∈ H1 (Ω)× L2 (Γ) . (1)

For the rest of the article, we denote

‖u‖1,h = ‖u‖1,Ω + ‖u‖1/2,h for u ∈ H1 (Ω) .

Nitsche Formulation for the Poisson Problem

The mixed formulation is obtained by introducing σ = ∇u. Given f ∈ L2 (Ω)
and gD = u|Γ , the (Nitsche) minimisation problem can be written as

argmin
(u,σ)∈V×L
σ=∇u

1

2
‖σ‖20,Ω +

α

2
‖u− gD‖21/2,h − 〈σ · n,u− gD〉−

∫
Ω

fudx. (2)

We write a variational equation for σ = ∇u using the Lagrange multiplier
spaceM = L to obtain the saddle-point problem of the minimisation problem
(2). The saddle point formulation is to find (u,σ,ϕ) ∈ V × L×M such that

ã [(u,σ) , (v, τ)] + b [(v, τ) ,ϕ] = ` (v, τ) , (v, τ) ∈ V × L,
b [(u,σ) ,ψ] = 0, ψ ∈M,

(3)

where

ã [(u,σ) , (v, τ)] =

∫
Ω

σ · τdx+ α 〈u, v〉1/2,h − 〈σ · n, v〉− 〈τ · n,u〉 ,

b [(u,σ) ,ψ] =

∫
Ω

(σ−∇u)ψdx,

` (v, τ) =

∫
Ω

fv dx− 〈τ · n,gD〉+ α 〈gD, v〉1/2,h ,
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where 〈·, ·〉 denotes duality pairing between H1/2 (Ω) and H−1/2 (Γ).

3 Finite Element Discretisation

Let Th be a quasi-uniform triangulation of the polygonal domain Ω. We
use the standard linear finite element space Vh ⊂ H1 (Ω) defined on the
triangulation Th, where

Vh := {v ∈ C0 (Ω) : v|T ∈ P1 (T) , T ∈ Th}.

The finite element space for the gradient of the solution is Lh = [Vh]
2. Let

{ρ1, ρ2, . . . , ρN} be the finite element basis for Vh. Starting with the standard
basis for Vh, we construct a space Qh spanned by the basis {µ1,µ2, . . . ,µN}
so that the basis functions of Vh and Qh satisfy the biorthogonality condition∫

Ω

ρiµj dx = cjδij, cj 6= 0, 1 6 i, j,6 N,

where δij is the Kronecker symbol, and cj a scaling factor. Therefore, the
sets of basis functions of Vh and Qh form a biorthogonal system. The basis
functions of Qh are constructed locally on a reference element T̂ so that the
basis functions of Vh and Qh have the same support, and in each element
the sum of all the basis functions of Qh is one [13]. We let Mh = [Qh]

2, thus
our problem is to find (uh,σh,ϕh) ∈ Vh × Lh ×Mh such that

ã [(uh,σh) , (vh, τh)] + b [(vh, τh) ,ϕh] = ` (vh, τh) , (vh, τh) ∈ Vh × Lh,
b [(uh,σh) ,ψh] = 0, ψh ∈Mh.

(4)
To show that the saddle-point problem has a unique solution, we need to
show that the following well-posedness conditions are satisfied.

1. The linear form ` (·), the bilinear forms ã [·, ·] and b [·, ·] are continuous
on the spaces in which they are defined.
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2. The bilinear form ã [·, ·] is coercive on the kernel space Kh defined as

Kh = {(uh,σh) ∈ Vh × Lh : b [(uh,σh) ,ψh] = 0, for all ψh ∈Mh} .

3. The bilinear form b [·, ·] satisfies the inf-sup condition

inf
ψh∈Mh

sup
(vh,τh)∈Vh×Lh

b [(vh, τh) ,ψh]

‖vh, τh‖Vh×Lh ‖ψh‖0,Ω
> γ, γ > 0.

The mesh-dependent norm for the product space Vh × Lh is defined by

‖uh,σh‖2Vh×Lh = ‖uh‖21,h + ‖σh‖
2
0,Ω , (uh,σh) ∈ Vh × Lh.

With the introduction of Mh, the bilinear form ã [·, ·] is not coercive on the
kernel subspace Kh ⊂ Vh × Lh. Thus, we need to modify the bilinear form
ã [·, ·] so that it is coercive on the kernel space Kh or even the whole space
Vh × Lh. In this article, we modify the bilinear form ã [·, ·] by adding a
stabilisation term so that it is coercive on the whole space Vh × Lh [8].

a [(uh,σh) , (vh, τh)] = r

∫
Ω

σh · τh dx+ (1− r)

∫
Ω

∇uh · ∇vh dx

+α 〈uh, vh〉1/2,h − 〈σh · n, vh〉− 〈τh · n,uh〉 ,

for 0 < r < 1.

We use the following inverse estimate result [12] to show the continuity
condition of ` (·) and also continuity and coercivity condition of the bilinear
form a [·, ·],

CI

∥∥∥∥∂vh∂n
∥∥∥∥
−1/2,h

6 ‖∇vh‖0,Ω for vh ∈ Vh. (5)

The continuity of the linear form ` (·), and the bilinear forms a [·, ·] and b [·, ·]
then follows from the Cauchy-Schwarz inequality, the duality pairing (1) and
the inverse estimate (5).
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For the coercivity condition, using the inverse estimate (5) and the following
Poincare-Friedrichs inequality,

‖uh‖21,Ω = ‖uh‖20,Ω + ‖∇uh‖20,Ω 6
(
c2 + 1

)
‖∇uh‖20,Ω ,

we can write

|a [(uh,σh) , (uh,σh)]|

= r ‖σh‖20,Ω + (1− r) ‖∇uh‖20,Ω + α ‖uh‖21/2,h − 2 〈σh · n,uh〉 ,
> r ‖σh‖20,Ω + (1− r) ‖∇uh‖20,Ω − 2 ‖σh · n‖−1/2,h ‖uh‖1/2,h + α ‖uh‖

2
1/2,h ,

> r ‖σh‖20,Ω + (1− r) ‖∇uh‖20,Ω −

(
1

ε
‖σh · n‖2−1/2,h + ε ‖uh‖

2
1/2,h

)
+ α ‖uh‖21/2,h ,

>

(
r−

1

εCI

)
‖σh‖20,Ω + (1− r) ‖∇uh‖20,Ω + (α− ε) ‖uh‖21/2,h ,

>

(
r−

1

εCI

)
‖σh‖20,Ω +

1− r

c2 + 1
‖uh‖21,Ω + (α− ε) ‖uh‖21/2,h ,

> C ‖(uh,σh)‖2Vh×Lh ,
(6)

where C is the minimum of
(
r− 1

εCI

)
, 1−r
c2+1

and (α− ε). We also require
1
CI
< rε < ε < α and 0 < r < 1. The choice of the penalty parameter α

and stabilisation parameter r is important for the application of this method.
However, the choice of the optimal parameter is beyond the scope of this
article. From this point forward, we use constant C as a mesh-independent
generic constant.

Now the inf-sup condition for the bilinear form b [·, ·] can be shown as in [8].
Thus we have proved the following theorem.

Theorem 1. The saddle point problem (4) with stabilised a [·, ·] has a unique
solution (uh,σh,ϕh) ∈ Vh × Lh ×Mh. The solution also satisfies

‖(uh,σh)‖Vh×Lh + ‖ϕh‖0,Ω 6 C ‖f‖0,Ω .
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4 Algebraic Formulation

In order to present an algebraic formulation of the problem, we use (xu, xσ, xϕ)
for the vector representation of the solution (uh,σh,ϕh) as elements in
Vh × Lh ×Mh. Let S, D, A, B, C and M be the matrices associated with
bilinear forms

∫
Ω
∇uh · ∇vh dx,

∫
Ω
τh ·ϕh dx,

∫
Γ
(σh · n)uh ds,

∫
Ω
∇vh ·

ϕh dx,
∑

1
he

∫
e
uhvh ds and

∫
Ω
σh · τh dx, respectively. For the right hand

side, we write f1 and f2 to represent the discrete forms of∫
Ω

f vh dx vh ds+ α 〈gD, vh〉1/2,h ,

and 〈τh · n,gD〉, respectively. Then the algebraic formulation of the problem
is  (1− r) S+ αC −A −B

−AT rM D
−BT D 0

 xuxσ
xϕ

 =

 f1
−f2
0

 , (7)

where the first two equations of (7) correspond to first equation of (4) with
stabilised a [·, ·], by setting τh = 0 and vh = 0, respectively. After statically
condensing out degrees of freedom associated with σh and φh in (7), we
arrive at the following system

Kxu = F

where

K = (1− r)S+ αC−AD−1BT − BD−1AT + rBD−1MD−1BT ,

F = f1 − BDf2.

Due to the choice of a biorthogonal system, matrix D is diagonal. As a result,
the statically condensed system matrix is sparse.

We introduce two projections Ph : L2 (Ω) → Qh and P∗h : L2(Ω) → Vh as
follows for v ∈ L2(Ω).∫
Ω

(Phv− v) ·µh dx = 0, µh ∈ Qh,
∫
Ω

(P∗hv− v) ·ϕh dx = 0, ϕh ∈ Vh.
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They satisfy the following estimates for u ∈ H1(Ω) :

‖Phu− u‖0,Ω 6 Ch‖u‖1,Ω, ‖P∗hu− u‖0,Ω 6 Ch‖u‖1,Ω. (8)

Furthermore, Ph and P∗h are stable in L2-norm [14]. Using this projection,
our problem is to find uh ∈ Vh such that,

A (uh, vh) = L (vh) , vh ∈ Vh, (9)

where

A (uh, vh) =

∫
Ω

Ph (∇uh) · Ph (∇vh) dx+ α 〈uh, vh〉1/2,h

−

∫
Γ

(Ph (∇uh) · n) vh ds−
∫
Γ

(Ph (∇vh) · n)uh ds,

L (vh) =

∫
Ω

fvh dx−

∫
Γ

(Ph (∇vh) · n)gD ds+ α 〈gD, vh〉1/2,h .

We also introduce two mesh-dependent norms

‖uh‖2h = ‖uh‖21,h + ‖Ph (∇uh)‖
2
0,Ω , uh ∈ Vh,

|||u|||
2
h = ‖u‖21,h + ‖Ph (∇u)‖

2
0,Ω + ‖∇u · n‖2−1/2,h , u ∈ H2 (Ω) ,

so that
|A (u, vh)| 6 |||u|||h ‖vh‖h , u ∈ V and vh ∈ Vh. (10)

We get the following estimate combining the interpolation estimate of Lemma
3.4 of [12] with that of the approximation of Ph:

inf
vh∈Vh

|||u− vh|||h 6 Ch ‖u‖2,Ω . (11)

We then have the following theorem.

Theorem 2. Let uh ∈ Vh be the solution to the problem (9). Suppose that
u ∈ H2 (Ω) is the solution to the problem (3) then

‖u− uh‖h 6 Ch ‖u‖2,Ω .
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Proof: From the coercivity (6) and continuity condition (10),

α ‖uh − vh‖2h 6 A (uh − vh,uh − vh) ,

= A (u− vh,uh − vh) +A (uh,uh − vh) −A (u,uh − vh) ,

= A (u− vh,uh − vh) + L (uh − vh) −A (u,uh − vh) ,

6 |||u− vh|||h ‖uh − vh‖h + L (uh − vh) −A (u,uh − vh) .

Using wh = uh − vh and divide both sides by ‖wh‖h, we get

α ‖uh − vh‖h 6 |||u− vh|||h +
L (wh) −A (u,wh)

‖wh‖h
.

Following exactly as in the proof of Strang’s second lemma [4] we get

‖u− uh‖h 6 C

(
inf
vh∈Vh

|||u− vh|||h + sup
wh∈Vh

L (wh) −A (u,wh)

‖wh‖h

)
. (12)

The first term of (12) is estimated using (11). We estimate the second term of
(12) using the approximation property of Ph, P∗h and the fact that f = −∆u.
For the complete proof, reader can refer to [9].

♠

5 Numerical Examples

In this section, we show two numerical examples to verify the convergence
rate of our approach. We compute the error in L2-norm and the rate of
convergence for u and σ. We also compute the error in H1-norm and the
rate of convergence for u. We will use Dirichlet boundary conditions for all
our examples. Both examples have Dirichlet boundary condition on Γ and
are defined on Ω = [0, 1]× [0, 1]. For both examples, we set the parameter
α = 10 and r = 1/2.
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Example 1

We consider the exact solution

u = xy (1− x) (1− y) ,

for the first example. The errors for this example with Dirichlet boundary
conditions are shown in Table 1.

Table 1: Discretisation errors with Dirichlet boundary conditions for example
1

elem ‖u− uh‖0,Ω ‖u− uh‖1,h ‖σ− σh‖0,Ω
error rate error rate error rate

8 3.74e-02 1.98e-01 1.73e-01
32 8.89e-03 2.0742 1.09e-01 0.8654 5.94e-02 1.5444
128 1.92e-03 2.2083 5.53e-02 0.9754 1.81e-02 1.7175
512 4.37e-04 2.1364 2.76e-02 1.0035 5.68e-03 1.6702
2048 1.04e-04 2.0752 1.37e-02 1.0062 1.87e-03 1.6056
8192 2.52e-05 2.0392 6.85e-03 1.0042 6.33e-04 1.5590

Example 2

We consider the exact solution

u = ex
2+y2

+ y2 cos (xy) + x2 sin (xy) ,

for our second example. The errors for this example with Dirichlet boundary
conditions are shown in Table 2.

From Tables 1 and 2, we can see that the rate of convergence of errors for u in
L2-norm and (1,h)-norm is 2 and 1, respectively, while the rate of convergence
of errors for σ in L2-norm is 1.5. These results are very similar to the result
from the three-field formulation for Poisson problem with same examples [8].
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Table 2: Discretisation errors with Dirichlet boundary conditions for example
2

elem ‖u− uh‖0,Ω ‖u− uh‖1,h ‖σ− σh‖0,Ω
error rate error rate error rate

8 7.36e-01 4.23e+00 2.32e+00
32 1.50e-01 2.2902 2.10e+00 1.0110 8.56e-01 1.4381
128 3.12e-02 2.2694 1.03e+00 1.0258 2.93e-01 1.5457
512 6.83e-03 2.1915 5.07e-01 1.0231 1.00e-01 1.5494
2048 1.57e-03 2.1179 2.51e-01 1.0149 3.45e-02 1.5384
8192 3.76e-04 2.0661 1.25e-01 1.0085 1.20e-02 1.5263

6 Conclusion

In this article, we describe a mixed finite element method to solve Poisson
equation based on Nitsche’s method. We add a stabilisation term so that
our bilinear form is coercive on the whole space. From numerical examples,
we can observe that the error and rate of convergence is very similar to our
previous three-field formulation for Poisson problem. Thus we can conclude
that this approach works well as an alternative to the standard formulation.
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