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Abstract

This case study is a based on measurements made approximately at
20cm lengths along a down-the-hole diamond drill core from a pyrite
mine in South Australia. The measurements are the P-wave velocity,
magnetic susceptibility and impedance. The trivariate distribution is
modelled using Gaussian, Student-t and vine copulas and the results are
compared in terms of goodness of fit and differences in extreme values
from distributions obtained by simulation from the copulas. The vine
copula provides the best fit for the variables. Trivariate linear spatial
Gaussian, Student-t and vine copulas are used to predict magnetic
susceptibility one step below the depth of the drill core. The vine
copula allows for more detailed modelling of the error structure, and so
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provides more accurate 90% prediction intervals. The 90% prediction
interval for the vine copula is wider than that for the Student-t copula,
and both are wider than the interval obtained with the Gaussian
copula. In general, copulas provides a more realistic modelling of
geological variables and hence allows for accurate assessment of risk
and uncertainty.
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1 Introduction

Deep seated orebodies, low metal grades and fluctuating commodity prices
have a high impact on the mining industry potentially reducing profit margins.
It follows that accurate modelling of all geological variables is needed to reduce
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the risk associated with mineral prospects. It is claimed that, the precise
modelling of geological variables is the most significant factor in the success
of mining projects [8]. In many geostatistical applications, kriging is used for
predicting geological variables at unknown locations, however this method is
only optimum if the distribution of the variables are multivariate Gaussian
MVG. In reality, most geological variables exhibit a skewed distribution,
which makes kriging inaccurate for predicting at unknown locations. Copula
models are ideal in dealing with highly skewed and tail dependent distribution,
these models encompasses all mutivariate distributions including the MVG [1,
6].

In this paper, the versatility and potential advantages of copula modelling of
multivariate relationships in the context of a down-hole diamond drill core
taken during prospecting has been demonstrated. The geological variables
are impedance, magnetic susceptibility and P-wave velocity. These three
geological variables are important path-finder variables when exploring for
pyrite mineralisation.

The first objective is to describe the multivariate distribution of the three
variables using copulas. The second objective is to compare Gaussian, Student-
t and vine copula models for predicting magnetic susceptibility at further
depths. The vine copula allows for detailed modelling of the error structure
and therefore provided an accurate 90% prediction interval for magnetic
susceptibility at further depth.

2 Methods

This section gives a brief overview of trivariate Gaussian and Student-t
copulas [7], and a brief description of pair copula construction [5].

Suppose that Z is a continuous random variable with a cumulative distribution
function (cdf) F(z). Since Z is a random variable so too is F(Z), and it follows
from its definition that F(Z) has a uniform distribution on the interval
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[0,1]. This is known as the probability integral transform of Z. Copulas
are multivariate uniform distributions. They encompass all multivariate
distributions because the marginal cdfs are uniformly distributed. Moreover,
copulas also yield multivariate distributions by expanding the uniform margins
to any probability distributions which can all be different.

The Gaussian copula is equivalent to a multivariate Gaussian distribution and
the Student-t copula is equivalent to the multivariate t distribution. They
can both be applied to multivariate data with a large number of components.
There is also a very wide range of different forms of bivariate copulas. However,
these bivariate copulas do not generally extend beyond bivariate data without
restrictions, such as equal correlations between components, that limit their
applicability. Vine copulas, also known as pair-copulas, provide a neat solution
to this limitation.

The trivariate Gaussian copula belongs to the family of elliptical copulas and
is equivalent to the standard MVG model. The cdf of the trivariate Gaussian
copula is:

C(u1,u2,u3;Σ) = ΦΣ

[
Φ−1(u1),Φ

−1(u2),Φ
−1(u3)

]
, (1)

where ΦΣ is the standardised MVG cdf and Φ−1 is the inverse standard
Gaussian cdf. The trivariate Student-t copula is defined, with respect to its
multivariate Student-t distribution, in a similar fashion.

It follows from the multiplicative rule of probability that any multivariate
distribution can be factorised in several ways using conditional distributions.
In particular, a copula can be factorised as a product of the marginal dis-
tributions and the bivariate conditional copulas. Such factorisations are
called pair-copula models. The pair-copula decomposition is however not
unique, for example, a five dimensional density can have about 240 different
forms of construction. Each decomposition expresses the full copula density
differently. [5, 2] used a graphical model called the regular vines to arrange
the large number of pair-copula constructions. This regular vine copula are
made up of special cases of D-vines and canonical vines [3]. Canonical vines
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are used when one can find a key variable that controls the relationships of
the entire datasets. In this application, the canonical vine was selected. One
of the variables used in this case study was found to control all the other
variables. Moreover, that same variable is an important key path-finder for
the exploration of pyrite mineralisation. Figure 1 shows the derivation of the
canonical vine (C-vine) copula [5] for three variables, and has the density:

f123(z1, z2, z3) = f1(z1).f2(z2).f3(z3).c12(F1(z1), F2(z2)),

.c13(F1(z1), F3(z3)).c23|1(F2|1(z2|z1), F3|1(z3|z1)). (2)

3 Results

The Brukunga mine site is located in the Southern Mount Lofty Ranges in
South Australia. The town is located 5 km north-east of Nairne and 40 km
east of Adelaide. The geology of the project area is primarily the Cambrian
calc-silstones lying within the north-south trending Kanmantoo Trough, the
youngest sequence in the southern part of the Adelaide Geosyncline. Iron-
sulphide mineralisation occurs as three steeply east dipping conformable lenses
that are separated by waste beds. Mineralization is pyrite and pyrrhotite
with some minor sphalerite, chalcopyrite, galena and arsenopyrites.

Figure 1: Canonical vine for three variables
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A down-the-hole diamond drill core drilled to a total depth of 324.02 m,
with an average sampling interval of 20 cm was sampled concurrently for
the measurements of magnetic susceptibility, P-wave velocity and impedance.
These three variables are the main path-finder variables for the exploration
of pyrite mineralisation. Summary statistics of all three geological variables
are given in Table 1. Histograms of the geological variables is shown in
Figure 2, negative skewness is evident in impedance and P-wave velocity
whilst positive skewness is evident in magnetic susceptibility. The Pearson
correlations between the three geological variables are also shown in Figure 2.
All the correlations are positive and the highest (0.95) is that between the
impedance and P-wave velocity.

Figure 2: Pearson correlation matrix between all three variables
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Table 1: Summary statistics of trivariate dataset

Statistics Impedance
(ohm)

P-wave Velocity
(km/s)

Magnetic
Susceptibility

(1)
Number of Samples 11079 11079 11079

Minimum Value 0 0 -389.80
First Quartile 13799 4804 8.89

Median 16625 5742 41.21
Mean 15709.72 5370.29 52.10

Standard Deviation 3540.16 1099.14 49.96
Kurtosis 2.14 3.10 7.69
Skewness -1.25 -1.57 1.62

Third Quartile 18268 6116 77.02
Maximum Value 27975 7270 532.67

3.1 Fitting marginal distributions

The first step in copula modelling is to estimate the marginal distribution
functions of the variables. Therefore, the cdfs can be calculated from all
(N = 11079) observations. Without any prior information from all three
distributions, a non-parametric estimation was chosen for the marginal dis-
tributions [9]. A kernel margin approximated by the empirical distribution
functions (ecdf) were fitted for all three variables. For example

FX,T (x) =
1

T + 1

T∑
i=1

I(Xi 6 x) =
rank(Xi)

T + 1
, (3)

where I() is 1 if its argument is true and 0 otherwise.

3.2 Fitting trivariate copulas

The ecdfs are used to transform the trivariate dataset to uniform scale.
The trivariate Gaussian copula was fitted by maximum likelihood using the



3 Results C223

function fitCopula in the package Vine Copula [10] in R. Figure 3 (upper
row) shows contour plots from the trivariate Gaussian copula. These plots
represent the marginal bivariate copula density functions of the fitted copula
for all the pairs from the triples. The trivariate Student-t copula was fitted
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Figure 3: Fitted theoretical contour plots for pairs of variables using Gaussian
(upper row), Student-t (middle row) and Vine copulas (lower row)

to the datasets using the function fitCopula in the package Vine Copula [10]
in R. The degrees of freedom for the fitted t distribution was v equal to
6. Figure 3 (middle row) shows the contour plots from the fitted Student-t
copula. The C-vine structure was fitted by using the decomposition expressed
in the Equation (2), the joint density function of the datasets was estimated.
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Unconditional survival Joe-Frank (BB8) and survival Joe-Gumbel (BB6) were
fitted by maximum likelihood in the first tree using the functions BiCopSelect
and RVineMatrix in the R package Vine Copula [10]. The density of the full
pair-copula is a product of all the bivariate copula densities following the
decomposition in Tree 1, a rotated 90°Joe-Frank (BB8) copula was fitted in
the last tree. A table of all competing copulas for each tree fitting is given
in Appendix A. The canonical vine structure explicitly includes the single
variable marginal distribution (in this application, the impedance) as the
root of the decomposition. Impedance was found to be the key variable that
controls the relationship of the dataset based on the Pearson’s correlations
with all other variables. In addition, impedance is the main path-finder
variable for the prospecting of pyrite orebodies. Figure 3 (lower row) shows
the bivariate contour plots from the fitted C-vine structure.

3.3 Goodness of fit test

The cdfs of the three fitted copulas obtained with a Monte-Carlo procedure
were plotted against the empirical copula ĈN in Equation 4 and Figure 4.

ĈN(u, v,w) =
1

N

N∑
i=1

I

(
Di

N+ 1
6 u,

Pi

N+ 1
6 v,

Mi

N+ 1
6 w

)
, (4)

where Di, Pi and Mi are the ranks of the impedance, P-wave velocity and
magnetic susceptibility respectively. The plotted points corrresponds to
u = v = w from 0.01 to 0.99 in steps of 0.01. The measure of fit is based on
how close the points are to the diagonal line y = x. The vine copula provides
a better fit compared with the Gaussian and Student-t copulas, because the
points appear closer to the y = x diagonal line. This was quantified by
calculating the mean of the squared vertical distances between the empirical
copula and the fitted copula just before (when the empirical copula is below
the fitted copula), or just after (when the empirical copula is above the fitted
copula), each of the 11079 data. This gave values of 0.00138, 0.00117 and
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Figure 4: Fitted Gaussian against empirical copulas (left), fitted Student-t
against empirical copulas (centre) and fitted vine against empirical copulas
(right).

0.00023 for the Gaussian, Student-t and vine copulas respectively. The best
fit, by this measure, is given by the vine copula. We formally compare the
fit of the vine copula with the Kolmogorov-Smirnov test. The maximum
deviation between the copula cdf and empirical density function is 0.0404.
The probability of a value as large or large than this when sampling 11079
random deviates from the vine copula is found by simulation. The differences
in the tail proportions of the three copulas and comparison of the field data
was investigated by generating (105) random deviates from each copula. This
was achieved with the R function mvdc in the package copula [4]. The
proportion of triples with all three components below 0.05, and above 0.95,
quantiles are shown in Table 2. The difference between the goodness of fit
test for the Gaussian and Student-t copula is not apparent from Figure 4
(left) and 4 (centre). However, the proportion below and above 0.05 and 0.95
quantiles respectively shows that the Student-t copula draws large number of
trivariate points to its upper and lower tails which is a consequence of its tail
dependence. The vine copula allows for tail dependence when it is apparent
but can also allow for lower levels of correlation in the tails than the Gaussian
copula. In this application, the vine copula gives a considerably better fit in
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Table 2: Number (parts per million) of triples below and above 0.05 quantiles
and 0.95 quantiles for all three variables

Data Number of
Triples

Number below
0.05

Number above
0.95

Field observations 11079 3520 632
Gaussian copula 105 8190 8140
Student-t copula 105 12990 13010

Vine copula 105 11480 1390

the upper tails, which are more important in mining applications. There is
less variation in the fits for the lower tails, but it can be seen that the vine
copula is not constrained to be symmetrical between the two tails. Comparing
all three fitted theoretical copula to the empirical field observations it seems
that the vine copula provides a better fit to the trivariate datasets.

3.4 Models for predicting at further depths

The trivariate Gaussian, trivariate Student-t and vine copulas were used to
predict magnetic susceptibility which is the primary path-finder variable for
pyrite mineralisation, one step below the depth of drill core. The principle
is to fit a trivariate copula to contiguous triples in the linear spatial series
using maximum likelihood. The trivariate Gaussian copula fitted to magnetic
susceptibility had a correlation of 0.97 at a lag of 1 and 0.93 at a lag of 2.
The fitted trivariate Student-t copula to the magnetic susceptibility had a
correlation of 0.99 at a lag of 1, and 0.97 at a lag of 2, with 3 degrees of
freedom. The correlation for the fitted magnetic susceptibility for the first
tree (Tree 1) in the C-vine were 0.99 and 0.97, the last tree (Tree 2) had a
correlation of 0.82.

The predictions one step below the drill core for all three copulas, after back
transforming are given in Table 3 below. The vine copula had the lowest
predicted value compared with the Student-t and Gaussian copulas but the
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differences are slight by comparison with the prediction interval. The 90%
prediction intervals are narrowest for the Gaussian copula and widest for the
vine copula. Both the Student-t copula and vine copula can allow for tail
dependence if it is appropriate, and the vine copula allows for more flexibility
in the modelling of the error structure than the Student-t copula. The wider
prediction intervals are a consequence of the more detailed modelling and the
90% prediction interval from the vine copula should be the most accurate.

Table 3: Gaussian, Student-t and Vine copulas predictions and 90% prediction
intervals

Model Prediction 90% Prediction Interval
Gaussian copula 5.76 (4.93, 6.95)
Student-t copula 6.08 (5.32, 7.32)

Vine copula 5.71 (4.26, 8.99)

4 Conclusions

Two applications of copulas have been considered, and for each application
three copula types have been compared. The first application was the mod-
elling of trivariate distribution of impedance, P-wave velocity and magnetic
susceptibility using copulas. The magnetic susceptibility is highly associated
with pyrite mineralization which is the primary economic variable. However,
the impedance and P-wave velocity provide further confirmation about the
response properties of the rocks, such as the grindability and fragmentation,
that affect the cost of processing. Estimating the relationship between these
variables is important when deciding whether to exploit a prospect. The vine
copula is more flexible than the Student-t copula or Gaussian copula and
provided better fit in terms of closeness to the fitted empirical copula and
the correspondence between its upper tails and those of the empirical copula.
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The other application was for the prediction of magnetic susceptibility one step
beyond the end of the drill core. Such predictions are valuable for establishing
points for further exploration. The vine copula provided smaller prediction
and far wider 90% prediction interval one step further depth. This finding is
a consequence of the very large number of outlying values in the distribution
of magnetic susceptibility (kurtosis of 7.69). In general, copulas provide a
means for dealing with outliers as they only contribute to the fitting of the
copula through their ranks. This is particularly valuable for geological data
where outlying values are common and should not be dismissed as erroneous.
In addition, copulas provides more accurate model, and also the uncertainty
associated with predictions are more reliable.
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Table 4: Appendix A: Competing bivariate copulas for C-vine fitting

Copula Models
Independence Gaussian Student-t Clayton

Frank Gumbel Joe BB1

BB7 BB8 BB6 Survival Clayton
Survival BB1 Survival Gumbel Survival Joe Survival BB6

Survival BB7 Rotated Clayton
(90°) Survival BB8 Rotated Gumbel

(90°)
Rotated BB6 (90°) Rotated Joe (90°) Rotated BB1 (90°) Rotated BB7 (90°)
Rotated Gumbel

(270°) Rotated BB8 (90°) Rotated Clayton
(270°) Rotated Joe (270°)

Rotated BB7 (270°) Rotated BB1 (270°) Rotated BB6 (270°) Rotated BB8 (270°)


	Introduction
	Methods
	Results
	Fitting marginal distributions
	Fitting trivariate copulas
	Goodness of fit test
	Models for predicting at further depths

	Conclusions
	Acknowledgements

