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Abstract

In this paper, we study wave interaction with a porous structure.
A nonlinear diffusive wave equation is used to describe gravity surface
wave propagation in a porous media. We solve the equations using
asymptotic expansion method and numerically using a staggered finite
volume method. We then derive the dispersion relation that holds
for gravity waves inside a porous structure. This dispersion relation
explains the diffusive mechanism of wave amplitude inside the porous
structure. Analysis of the dispersion relation shows that amplitude
reduction depends on porous medium parameters such as porosity, fric-
tion coefficient, length of the structure, and wave frequency. To validate
our numerical scheme, we compare the wave reduction amplitude from
the numerical result with the asymptotic solution. A good agreement
of the comparison is observed. Furthermore, the numerical model is
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employed to investigate the effectiveness of porous media in dissipating
wave energy of an incoming wave. The results from this paper can be
used to determine the optimum dimension of the porous medium so
that the incoming wave can be reduced as much as possible to protect
shoreline.
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1 Introduction

Study on wave propagation passing through an emerged porous media has
many practical applications in coastal and ocean engineering. One function
of this porous structure is as a breakwater. Nowadays, mangrove forest as
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an emerged porous media has been planted in several beach areas for coastal
protection. An emerged porous structure as a breakwater functions to reduce
the amplitude of waves propagating through the structure. There is some
research in this area, such as by Sollitt and Cross [9], Madsen [5], and Sulisz
[10], where researchers have developed a mathematical model for waves prop-
agation in a porous structure and studied wave reflection and transmission
from the porous structures. Some researchers such as Fernando, et al [1], Van
Gent [11], Lynett, et al [4], Pengzhi Lin and Karunarathna [2], Liu, et al [3],
and Scarlatos and Singh [8] studied wave interaction with a porous structure
experimentally and numerically using mild slope equation or potential theory
with linear friction. Here, we investigate wave damping inside a porous media
by using a simpler model that is based on a shallow water type model. We
modified the shallow water equation by including fully non-linear frictional
dissipation. However, by including nonlinear terms, the equation becomes
relatively difficult to solve analytically. Therefore, we propose an asymptotic
expansion approach to solve the equation. Once this is performed, we propose
a non-dissipative numerical scheme based on a staggered finite volume method
to solve our modified shallow water equations numerically. With this, we can
further our study by implementing our numerical scheme to simulate wave in
the porous media to investigate the wave reduction by a porous medium. Our
relatively simple approach can now provide solutions that could be useful in
practice, in either an operational or strategic manner for coastal protection
using porous media.

2 Governing equations

In this section, the governing equation of the flow inside a porous medium will
be discussed. The model we used here is based on our previous model that has
been explained briefly in [6]. In our previous research, we divided the water
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Figure 1: Sketch of the domain

domain into three regions: two free regions Ω1,Ω3 and one porous region Ω2,
see Figure 1. In this research, we will focus on free surface elevation inside
the porous region Ω2.

Let η and u denote surface elevation and horizontal fluid velocity, respectively.
For the flow in porous media with dimensionless porosity n, the rate of change
of the free surface η depends on the filtered velocity u

n
. The porosity n is

0 < n 6 1. Porosity n = 1 means there is no porous media, and n = 0
is for rigid structure. We consider a shallow water type model over a flat
bottom topography d that consists of mass conservation and momentum
balance. In the momentum equation, we add a resistance term to the porous
media. Here, we implement a frictional force as a resistance formulated by
Dupuit-Forchheimer (α+ β|u|)u as written in [11]. Hence, the full governing
equations in the porous media are:

ηt +
d

n
ux = 0, (1)

1

n
ut + gηx = −(α+ β|u|)u, (2)

with g as the gravitational acceleration. The coefficient α expresses the
laminar flow resistance whereas β expresses the turbulent flow resistance.

In order to observe long waves on shallow water, we introduce the scaled
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variables

x̄ =
x

L
, t̄ =

√
gd

L
t, η̄ =

η

a
, ū =

d

a
√
gd
u, ᾱ =

L√
gd
α, β̄ = Lβ

, where L and a represent wavelength and amplitude. When simplifying
we omit the overbars, and utilize small parameter ε = a/d. Therefore the
governing equation (1) and (2) become

ηt +
1

n
ux = 0, (3)

1

n
ut + ηx = −(α+ εβ|u|)u. (4)

3 Asymptotic expansion solutions

In this section, we derive the asymptotic solution for the non-linear porous
shallow water equations. We assume the wave is a monochromatic wave with
wave number k with a certain frequency ω. Now, we seek the solution of
equation (3) and (4) in the following perturbation forms:

η = η0 + εη1 +O(ε
2), (5)

u = u0 + εu1 +O(ε
2). (6)

We implement the asymptotic expansion method to solve our governing
equations (1, 2). Substituting (5-6) to (1, 2), we obtain

η0t +
1

n
u0x + ε

(
η1t +

1

n
u1x

)
≈ 0, (7)

1

n
u0t + η0x + αu0 + ε

(
1

n
u1t + η1x + αu1 + βu

2
0

)
+ 2ε2βu0u1 + ε

3u21 ≈ 0. (8)

Collecting order O(1) terms yields

η0t +
1

n
u0x = 0, (9)

1

n
u0t + η0x + αu0 = 0. (10)
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Solving the corresponding equations starting from the first O(1) terms above and
assuming η0(x, t) = F(x)eiωt and u0(x, t) = G(x)eiωt, the explicit approximate
expression of η0 and u0 is then obtained as follows:

η0(x, t) = a1e
i(kx+ωt) + a2e

−i(kx−ωt), (11)

u0(x, t) =
n√
1− if

(a1e
i(kx+ωt) − a2e

−i(kx−ωt)). (12)

Wave number in a porous media k follows this dispersion relation

k2 = ω2(1− iαn/ω). (13)

Using the assumption that was used in Madsen and White (1976) [5], we approximate
α = fωn . Thus the wave number in equation (13) is

ω2

gk
=

k

g(1− if)
. (14)

Collecting order O(ε) terms, we have

η1t +
1

n
u1x = 0, (15)

1

n
u1t + η1x + αu1 + βu

2
0 = 0. (16)

Let η1(x, t) = C(x)H(t) and u1(x, t) = u1h(x, t) + u1nh(x, t), where u1h(x, t) =
Dh(x)Hh(t) and u1nh(x, t) = Dnh(x)Hnh(t). Substitute these functions for η1
and u1 to equations (15-16). This will yield

H ′C+
d

n
HD ′ = 0, (17)

1

n
H ′D+ gC ′H+ αDH+ βu20 = 0. (18)

The homogeneous case u20 = 0, we use anzat for Hh(t) is eiωt, then the equation
(17) and (18) without βu20 and using definition α = fωn become

C(x) = −
d

iωn
Dx, (19)

Dxx + k
2D = 0. (20)
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The homogeneous solution of equation (20) is

Dh(x) = a3e
−ikx + a4e

ikx,

with k following the dispersion relation (13). Further, we are looking for the
non-homogeneous solution for equation (18). For the non-homogeneous case, we
assume our Hnh(t) = e2iωt that correlated with non-homogeneous term u20. Using
undetermined coefficient method and substituting solution of u0 from equation (12)
we obtain

U1nh(x, t) = (a5e
−2i(kx−ωt) + a6e

2iωt + a7e
2i(kx+ωt)),

where

a5 =
inβ

ω

1

−3(1− if)
a21, (21)

a6 =
2inβ

ω

1

(1− if)
a1a2, (22)

a7 =
inβ

ω

1

−3(1− if)
a22. (23)

Substitute C(x),u1h + u1nh, we will obtain solution for η1 and u1.

4 A staggered finite volume method

In this section, we will solve equations (3) and (4) numerically. To get the real
amplitude reduction by the porous structure quantitatively accurate, we need a
numerical scheme that doesn’t include error damping. Here, a numerical finite
volume method on a staggered grid will be implemented to simulate a diffusive
wave in a porous medium. Consider the equation for gravity waves in a porous
media (3, 4) in domain [0,Lx]. We discretize the porous domain in a staggered
way 0 = x1/2, x1, . . . , xNx+1/2 = Lx. Mass conservation (1) is approximated at a
cell centered at xi whereas momentum conservation (2) is approximated at a cell
centered at xi+1/2, see Figure 2. In this setting, values of η will be computed at
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every full grid points xi, with i = 1, 2, ...,Nx using mass conservation (24). Velocity
u will be computed at every staggered grid points xi+ 1

2
, with i = 1, 2, ...,Nx − 1

using momentum equation (25). Approximate equations are then

ηn+1
i − ηni
∆t

+
1

n

uni+1/2 − u
n
i−1/2

∆x
= 0, (24)

1
nu

n+1
i+1/2 −

1
nu

n
i+1/2

∆t
+
ηn+1
i+1 − ηn+1

i

∆x
+ (α+ β|u|n)|i+1/2u

n+1
i+1/2 = 0. (25)

In case a fully nonlinear friction term is used, then discretize the form of (α+β|u|)u
by implementing the Picard linearization (α+ β|un)un+1.

Further, to simulate the gravity waves in the free water area, the approximate
equations are just (24) and (25) with n = 1 and f = 0.

Figure 2: Illustration of staggered grid with cell [xi− 1
2
, xi+ 1

2
] for mass conser-

vation and cell [xi−1, xi] for momentum equation.

Here, we derive stability condition for (24, 25). Note that the friction term is
calculated implicitly in order to avoid a more restricted stability condition. Let
ηnj = ρneiaj, un

j+ 1
2

= rneia(j+
1
2 ) and substitute these into (24) and (25). This

leads to (
1 0

∆t
∆x2i sin

a
2 1

)(
ρn+1

rn+1

)
=

(
1 −∆t∆x2i sin

a
2

0 1

)(
ρn

rn

)
,

or (
ρn+1

rn+1

)
= A

(
ρn

rn

)
.



5 Numerical simulation C295

The multiplication of matrix A is

A =

(
1 −∆t∆x2i sin

a
2

−∆t∆x2i sin
a
2 1−

(
∆t
∆x

)2
4 sin2 a2

)
, (26)

and eigenvalues λ of matrix A must satisfy

(λ− 1)(λ− 1+ C2) + C2 = 0. (27)

If |C| 6 2 in equation (27) where C2 = gd
(
∆t
∆x

)2
4 sin2 a2 , then λ is a complex

number with |λ| = 1. Thus, the stability condition for (24, 25) is ∆t
∆x 6 1. In

this case, the complex eigen values λ have norm equal to one, so this scheme is
non-dissipative or free from numerical damping error [7].

5 Numerical simulation

In this section, we implement the above scheme to simulate the free surface inside
a porous media. Here, we use non-dimensional quantities. For simulation, we take
a computational domain 0 < x < 10. We take ε = a/d = 1/10 = 0.1. The initial
condition is still water level η(x, 0) = 0,u(x, 0) = 0, and for the left wave influx we
take a monochromatic wave with amplitude 1

η(0, t) = e−iωt, (28)

with ω = 3. Along the right boundary, we apply an absorbing boundary. The
whole domain is a porous media with parameters n = 0.9,α = 1,β = 0.1 and for
computations we use ∆x = 0.1,∆t = ∆x = 0.1. Figure 3 shows a wave amplitude
reduction in the porous medium.

Further, we show that our numerical surface profile reduces in the porous media
with an envelope that confirms the |η(x, t)| from dispersion relation and asymptotic
expansion solution. Taking parameter values ω = 3, n = 0.9,α = 1,β = 0.1 the
dispersion relation (13) will give us a complex value wave number k = 3.0328 −
0.4451 i. A monochromatic wave exp−i(kx−ωt) with a negative imaginary part
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Figure 3: Damping of wave amplitude inside the porous media.

=(k) will then undergo an amplitude reduction, see Figure 4. Let KT = |η(x, t)| =
exp =(k)x, with KT as the term that denotes amplitude reduction of incident wave
as a function of x, that is, the length of a porous media. It is now clear that wave
damping depends strongly on the complex wave number k. Parameters involved in
(13) are wave frequency ω, porosity n, and linear friction α.

For numerical computations, we take the parameters used before and we use
∆x = 0.1, and ∆t = ∆x. The surface profile in a porous media is plotted in Figure 4.
It is seen that the numerical wave amplitude reduction is in a good agreement with
the solution from asymptotic expansion. We also see from Figure 4, that the longer
the porous media Lx is, the bigger the wave damping or the smaller the KT . Wave
damping also depends on porosity n, friction coefficient f, and wave number k. We
made another comparison amongst the dependance of wave damping with n and
f = αωn . For the computation, we take ω = 12 and Lx = 10. We plot the curve of
wave amplitude |η| with respect to porosity n for several values of f. From Figure 5
(Left), we conclude that for a certain porosity n, larger friction coefficient will lead
to a smaller wave transmission coefficient or larger damping. Larger porosity n will
yield larger KT , see Figure 5 (Right).
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Figure 4: Black line as the curve of |η(x, t)| = | exp−i(kx−ωt) | at certain time
of k = 3.0328−0.4451 i. Blue line as the numerical surface elevation in porous
media. Red line as the asymptotic expansion solution η = η0 + εη1.
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Figure 5: (Left) Curves of |η(x, T)| for fixed values of porosity n = 0.9 and
several friction coefficient. (Right) The curve of KT w.r.t n for fixed values of
friction coefficient.
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6 Conclusions

In our study, first, we derived the dispersion relation that holds for waves inside a
porous media where it explains the diffusive mechanism of the porous media itself.
Analysis of dispersion relation gives us a damping effect of a specific emerged porous
media. Emerged porous media with a particular characteristic and length has a
strong influence on the reduction of wave amplitude. Furthermore, the solution for
wave amplitude inside the porous media is obtained from asymptotic expansion. The
finite volume method on a staggered grid is a stable and free damping error method
for simulating wave damping passing through a porous media. Moreover, our
numerical scheme results in numerical wave damping that confirms the asymptotic
expansion solution.
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