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Using the stochastic Galerkin method as a
predictive tool during an epidemic
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Abstract

The ability to accurately predict the course of an epidemic is ex-
tremely important. This article looks at an influenza outbreak that
spread through a small boarding school. Predictions are made on multi-
ple days throughout the epidemic using the stochastic Galerkin method
to consider a range of plausible values for the parameters. These pre-
dictions are then compared to known data points. Predictions made
before the peak of the epidemic had much larger variances compared
to predictions made after the peak of the epidemic.
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1 Introduction

Compartment epidemic models are often used for modelling the likely course
of an epidemic and have been extensively studied [7]. However, the parameters
within these models are often not known with certainty [11]. It is important
for this uncertainty to be included into epidemic models in order to obtain
accurate predictions.

One way of incorporating uncertainty into an epidemic model is to make
the uncertain parameters functions of random variables [2]. The mean and
variance can then be determined using a sampling technique such as Monte
Carlo sampling. However, this can be computationally expensive depending
upon the probability distributions of the random variables and the number of
uncertain parameters. Alternatively, the stochastic Galerkin method has been
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shown to produce accurate results while being much more computationally
efficient [4].

Because of the stochastic Galerkin’s advantages over Monte Carlo sampling,
it has been extensively studied and applied to a variety of problems. However,
only a limited number of articles have applied the stochastic Galerkin method
to epidemic modelling [2, 12, 8, 11, 10, 4, 3]. This article extends the work
done by Roberts [11] and Harman and Johnston [3] by using the stochastic
Galerkin method to make predictions of the epidemic curve on multiple
days during an epidemic by considering a range of plausible values for the
parameters. Roberts [11] uses the stochastic Galerkin method to predict the
likely course of an influenza outbreak in New Zealand using data from 2009.
Uncertainty was incorporated into the reproduction number, whereas this
article considers uncertainty in multiple parameters of an sir model. This
allows for much greater flexibility in the representation of the uncertainty.
While Harman and Johnston [3] consider multiple uncertain parameters, the
prediction obtained from the stochastic Galerkin method is only calculated
towards the end of the epidemic, well after the peak of the epidemic. This
article considers multiple predictions around the peak of the epidemic. These
predictions are then compared to known data points.

2 The SIR epidemic compartment model

One of the most common epidemic compartment models is the sir model [9].
In the sir model, each person within the population is placed into one of
three possible compartments: susceptible (S), infected (I) or recovered (R).
The differential equations for the sir model are given by

dS

dt
= −βSI,

dI

dt
= βSI− γI,

dR

dt
= γI, (1)

where β is the ‘contact rate’ and 1/γ is the average recovery time [7]. Note
that these equations have been normalised such that S + I + R = 1. The
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parameters β and γ are often assumed to be constants. However, they are
rarely known with certainty. To represent the uncertainty in these parameters,
they can be considered functions of random variables. For example,

β = β(ξ1), γ = γ(ξ2),

where ξ1 and ξ2 are random variables with probability density functions
w1(ξ1) and w2(ξ2) respectively and probability spaces (Ω1,F1,P1) and
(Ω2,F2,P2) respectively.

As the sir model now contains random variables, it can no longer be solved
using a single call to a numerical ode solver. Random sampling techniques
such as Monte Carlo sampling can be used to determine the mean solution
and its variance. However, a more computationally efficient method is the
stochastic Galerkin method [3].

2.1 Applying the stochastic Galerkin method

To apply the stochastic Galerkin method, the solutions for S and I are
expanded in the form

S(t, ξ1, ξ2) =

∞∑
i=0

∞∑
j=0

Sij(t)Ψi(ξ1)Φj(ξ2),

I(t, ξ1, ξ2) =

∞∑
i=0

∞∑
j=0

Iij(t)Ψi(ξ1)Φj(ξ2),

(2)

where Sij(t) and Iij(t) are deterministic functions that need to be determined,
and Ψi(ξ1) and Φj(ξ2) are appropriately chosen orthogonal polynomials [1].
The orthogonal polynomials Ψi(ξ1) and Φj(ξ2) form a basis over which the
solutions for S and I can be expanded. It is important to note that S and
I are now written explicitly as functions of not only time, but the random
variables ξ1 and ξ2 as well.
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Substituting the form of the solutions for S and I (Equations (2)) into the
sir model (Equations (1)) gives

∞∑
i=0

∞∑
j=0

dSij

dt
ΨiΦj = −β

∞∑
i=0

∞∑
j=0

∞∑
m=0

∞∑
n=0

SijImnΨiΦjΨmΦn,

∞∑
i=0

∞∑
j=0

dIij

dt
ΨiΦj = β

∞∑
i=0

∞∑
j=0

∞∑
m=0

∞∑
n=0

SijImnΨiΦjΨmΦn

− γ

∞∑
i=0

∞∑
j=0

IijΨiΦj.

(3)

Applying a Galerkin projection by multiplying through by Ψu(ξ1)Φv(ξ2)
(where u, v = 1, 2, . . .), integrating over the probability space and truncating
the expansions at the Pth order gives

dSuv

dt
= −

1

Kuv

P∑
i=0

P−i∑
j=0

P∑
m=0

P−m∑
n=0

SijImn〈βΨiΦjΨmΦn,ΨuΦv〉,

dIuv

dt
=

1

Kuv

P∑
i=0

P−i∑
j=0

P∑
m=0

P−m∑
n=0

SijImn〈βΨiΦjΨmΦn,ΨuΦv〉

−
1

Kuv

P∑
i=0

P−i∑
j=0

Iij〈γΨiΦj,ΨuΦv〉,

(4)

where the inner product 〈F,G〉 is defined as

〈F,G〉 =
∫
Ω2

∫
Ω1

FGw1(ξ1)w2(ξ2)dξ1dξ2,

and
Kuv =

∫
Ω2

∫
Ω1

(Ψu(ξ1))
2 (Φv(ξ2))

2
w1(ξ1)w2(ξ2)dξ1dξ2.
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If the orthogonal polynomials Ψi(ξ1) and Φj(ξ2) are chosen such their weight
functions are w1(ξ1) and w2(ξ2) respectively, many of the inner products triv-
ially evaluate to zero. This gives a system of 2

(
P+2
2

)
deterministic differential

equations for Sij(t) and Iij(t) [6].

For example, assume β has a uniform distribution on [2.5, 5.5] and γ has a
uniform distribution on [0.5, 1.5]. As β and γ have uniform distributions,
the Legendre orthogonal polynomials would be chosen for Ψi(ξ1) and Φj(ξ2).
The inner products in Equations (4) could either be evaluated numerically or
symbolically. The first order (P = 1) system of equations for Sij(t) and Iij(t)
is given by

dS00

dt
= −4S00I00 −

4

3
S01I01 −

1

2
I00S10 −

1

2
I10S00 −

4

3
I10S10,

dI00

dt
= 4S00I00 +

4

3
S01I01 +

1

2
I00S10 +

1

2
I10S00 +

4

3
I10S10 − I00 −

4

3
S10I10,

dS01

dt
= −4S01I00 − 4S00I01 −

1

2
S10I01 −

1

2
S01I10,

dI01

dt
= 4S01I00 + 4S00I01 +

1

2
S10I01 +

1

2
S01I10 − I01 −

1

2
I00,

dS10

dt
= −

3

2
S00I00 −

1

2
S01I01 − 4S10I00 − 4S00I10 −

9

10
S10I10,

dI10

dt
= +

3

2
S00I00 +

1

2
S01I01 + 4S10I00 + 4S00I10 +

9

10
S10I10 − I10.

As the system of differential equations is deterministic, it can easily be
solved using a numerical solver such as the matlab function ode45. While
uncertainty was included in the model using random variables, the final
system of equations is deterministic and only needs to be solved once.
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2.2 Determining mean and variance from stochastic
Galerkin solution

Once the stochastic Galerkin solution has been obtained, the mean and
variance can easily be determined with very little additional computation.
For example, the mean number of infected individuals, E[I(t, ξ1, ξ2)], is given
by

E[I(t, ξ1, ξ2)] = I00(t),

and the variance, Var[I(t, ξ1, ξ2)], is given by

Var[I(t, ξ1, ξ2)] =

P∑
i=0

P−i∑
j=0

(Iij(t))
2 〈(Ψi(ξ1))2 , (Φj(ξ2))2〉− (I00(t))

2.

Therefore the mean solution is simply given by the zero order term of the
stochastic Galerkin expansion and the variance can quickly be calculated
from the higher order terms [15].

3 Influenza spreading through a small
boarding school

In this section, an influenza epidemic that spread through a small boarding
school in the North of England will be investigated [13]. An sir model will
be used to make predictions on different days during the epidemic using only
data that would have been available on that day. These predictions will then
be compared to known data points.
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3.1 Using a ‘best fit’ approach

One of the simplest prediction methods is to simply find the ‘best fit’ using a
least squares fitting technique. For chosen values of β and γ, the error for a
prediction made D days after the start of the epidemic, EDβ,γ, is given by

EDβ,γ =

√√√√ D∑
k=1

[Iβ,γ(k) − IR(k)]
2, (5)

where Iβ,γ(k) is the fraction of individuals infected on day k using the sir
model and IR(k) is the actual fraction of individuals infected on day k.

While this prediction has the lowest error, there is no guarantee that this is
an accurate prediction. It also gives no confidence intervals on what could
happen.

3.2 Using the stochastic Galerkin method

Rather than simply considering the ‘best’ values for β and γ in the sir model,
a range of plausible values for each of the parameters will be considered. A pair
of β and γ values will be considered plausible if it is below a predetermined
error threshold.

As the outcome of the epidemic is already known, it would be easy to simply
choose error thresholds on a given day of the epidemic that resulted in
accurate predictions. Therefore, it is important to implement an algorithm
for calculating the error thresholds so that knowledge of future data points
does not influence the determination of error thresholds. Therefore, the error
thresholds for a given day will be based upon the error of the ‘best fit’ for
that day. Two error thresholds will be considered: double and triple the error
obtained when using the ‘best’ values. The stochastic Galerkin method will
then be applied to this range of plausible values and the mean prediction and
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its variance obtained. For example, on day five of the epidemic, the ‘best
fit’ prediction has an error of approximately 0.02. Therefore the two error
thresholds for plausible β and γ values will be 0.04 and 0.06. A heat map of
the error as well as the ranges of plausible β and γ values on days five, six
and seven of the epidemic can be seen in Figure 1. The error heat maps were
calculated using Equation (5).

While Figure 1 shows the full error heat maps, it is important to note that
it is not necessary to fully calculate the error heat maps in order to obtain
probability distributions for β and γ. As the range of plausible values forms
a closed shape, a simple algorithm can be used to find the border of plausible
values [5]. This significantly decreases the number of parameter pairs that
need to be tested. For example, the error for parameter pairs in the top left
corner of the heat maps does need to be calculated as it falls well outside the
border of plausible values. However, for clarity, the full error heat maps are
included in this article.

It is also important to note that the aim of this article is not to compare
the predictions obtained from the ‘best fit’ and stochastic Galerkin methods.
These are two very different methods. The ‘best fit’ can be implemented with
a handful of lines of code in matlab, whereas the stochastic Galerkin method
requires significantly more effort to implement. The ‘best fit’ prediction is
simply calculated so that the error thresholds for the stochastic Galerkin
method are chosen without bias.

Using the ranges of plausible values for β and γ (Figure 1), the probability
density functions for β and γ were calculated in order to apply the stochastic
Galerkin method. To determine the probability distribution for β, the number
of plausible γ values for each plausible value of β was counted. The results
were then plotted as a histogram. By normalising the area under the histogram,
the general shape of the probability distribution was found. A similar process
was used to find the probability density function for γ. The probability
distributions for β and γ on days five, six and seven of the epidemic can be
seen in Figure 2. Parameter ranges for β, γ and R0 are given in Table 1.
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Figure 1: Error heat maps for β and γ values on days five, six and seven of
the epidemic. Contours are double and triple the ‘best fit’ error on that day.
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Figure 2: Probability distributions for β and γ on days five, six and seven of
the epidemic. Red uses the smaller error threshold while blue uses the larger
error threshold.
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Day Error Threshold β range γ range R0 range
5 0.04 1.11 - 1.62 0 - 0.41 3.93 -
5 0.06 1.09 - 1.92 0 - 0.66 2.90 -
6 0.09 1.23 - 1.90 0.14 - 0.61 3.04 - 8.86
6 0.13 1.01 - 2.05 0 - 0.73 2.72 -
7 0.09 1.52 - 1.86 0.37 - 0.58 3.12 - 4.22
7 0.14 1.39 - 1.96 0.30 - 0.66 2.85 - 4.79
8 0.10 1.53 - 1.80 0.38 - 0.54 3.22 - 4.24
8 0.16 1.43 - 1.89 0.33 - 0.61 2.95 - 4.65

Table 1: Parameter ranges for β, γ and R0 on days 5-8 of the epidemic. Upper
limits on R0 are not possible on days 5 and 6 as γ = 0 was a plausible value.

As the probability distributions were non-standard, fifth order polynomials
were used to approximate the probability distributions. The associated orthog-
onal polynomials were then derived using the Gram-Schmidt orthogonalisation
method [14]. Finally, the stochastic Galerkin method was applied to find the
mean prediction and its variance.

3.3 Predictions

Figure 3 shows the predictions calculated using the stochastic Galerkin method
on days five, six and seven of the epidemic. These predictions were calculated
using matlab version R2016a. The ‘best fit’ predictions are also shown in
Figure 3, as well as the known data points.

On day five, both of the predictions from the stochastic Galerkin method
overestimate the peak of the epidemic as well as its tail. While the contours
of plausible values for β and γ appear quite narrow (Figure 1(a)), plausible
γ values range from 0 to 0.66 for the larger error threshold. This causes the
variance in the stochastic Galerkin predictions to be quite large, especially
when using the larger error threshold. It is interesting to note that when
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using the smaller error threshold, many of the ‘future’ data points fall outside
one standard deviation. However, when using the larger error threshold, most
of the data points fall within one standard deviation.

Both stochastic Galerkin predictions calculated on day six of the epidemic
are much better than those calculated on day five. The predictions begin very
similarly and reach their peaks at approximately the same time. However,
their tails are slightly different and overestimate the tail of the epidemic.
Even using the smaller error threshold, most of the data points fall within
one standard deviation of the mean prediction.

By day seven, the range of plausible γ values has significantly decreased with
the larger error threshold having a minimum γ value of 0.3. This is due to the
day seven data point showing a decrease in the number of infected students
for the first time which greatly helps in the estimation of γ. Because of
this, the stochastic Galerkin predictions are very similar, with the prediction
calculated using the smaller error threshold having a slightly higher peak.
Both predictions underestimate the fraction infected on days eight, nine and
ten but overestimate the fraction infected on days twelve through fourteen.
The variance is also considerably smaller than the day six predictions.

Predictions calculated after day seven give similar results to the predictions
calculated on day seven as the peak of the epidemic has already passed.
Parameter ranges for β and γ on day eight of the epidemic can be seen in
Table 1.

4 Conclusion

This article has looked at using the stochastic Galerkin method to make
predictions on different days during an epidemic and comparing the predictions
to known data points.

Rather than simply considering the parameter values that result in the
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Figure 3: Predictions made on days five, six and seven of the epidemic.
Squares are known data points while circles are future data points. Black is
the ‘best fit’ prediction. Red and blue are stochastic Galerkin predictions
with double and triple the error of the ‘best fit’ respectively. Solid lines are
mean predictions and dashed lines are one standard deviation from the mean.
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smallest error, a range of plausible values for the parameters can instead be
considered. From these ranges of plausible values, probability distributions
for the parameters can be determined. The stochastic Galerkin method
can then be used to determine the mean prediction. The variance can also
be determined from the stochastic Galerkin solution which gives confidence
intervals for the prediction.

In this article, it was assumed that there was a single student who returned
to the boarding school infected with influenza. However, this work could be
extended to find plausible ranges of initial conditions and what effect this has
on the predictions during the epidemic.

Acknowledgments This research is supported by an Australian Govern-
ment Research Training Program (RTP) Scholarship.

References

[1] B. M. Chen-Charpentier, J. C. Cortes, J. V. Romero, and M. D. Rosello.
Some recommendations for applying gPC (generalized polynomial chaos)
to modeling: An analysis through the Airy random differential equation.
Applied Mathematics and Computation, 219(9):4208 – 4218, 2013.
doi:10.1016/j.amc.2012.11.007 C304

[2] B. M. Chen-Charpentier and D. Stanescu. Epidemic models with
random coefficients. Mathematical and Computer Modelling, 52:1004 –
1010, 2010. doi:10.1016/j.mcm.2010.01.014 C302, C303

[3] D. B. Harman and P. R. Johnston. Applying the stochastic galerkin
method to epidemic models with individualised parameter distributions.
In Proceedings of the 12th Biennial Engineering Mathematics and
Applications Conference, EMAC-2015, volume 57 of ANZIAM J., pages
C160–C176, August 2016. doi:10.21914/anziamj.v57i0.10394 C303, C304

https://doi.org/10.1016/j.amc.2012.11.007
https://doi.org/10.1016/j.mcm.2010.01.014
https://doi.org/10.21914/anziamj.v57i0.10394


References C316

[4] D. B. Harman and P. R. Johnston. Applying the stochastic galerkin
method to epidemic models with uncertainty in the parameters.
Mathematical Biosciences, 277:25 – 37, 2016.
doi:10.1016/j.mbs.2016.03.012 C303

[5] D. B. Harman and P. R. Johnston. Boarding house: find border. 2019.
doi:10.6084/m9.figshare.7699844.v1 C309

[6] D. B. Harman and P. R. Johnston. SIR uniform equations. 2 2019.
doi:10.6084/m9.figshare.7692392.v1 C306

[7] H. W. Hethcote. The mathematics of infectious diseases. SIAM Review,
42(4):599–653, 2000. doi:10.1137/S0036144500371907 C302, C303

[8] R.I. Hickson and M.G. Roberts. How population heterogeneity in
susceptibility and infectivity influences epidemic dynamics. Journal of
Theoretical Biology, 350(0):70 – 80, 2014. doi:10.1016/j.jtbi.2014.01.014
C303

[9] W. O. Kermack and A. G. McKendrick. A contribution to the
mathematical theory of epidemics. Proceedings of the Royal Society of
London. Series A, 115(772):700–721, August 1927.
doi:10.1098/rspa.1927.0118 C303

[10] M. G. Roberts. A two-strain epidemic model with uncertainty in the
interaction. The ANZIAM Journal, 54:108–115, 10 2012.
doi:10.1017/S1446181112000326 C303

[11] M. G. Roberts. Epidemic models with uncertainty in the reproduction
number. Journal of Mathematical Biology, 66(7):1463–1474, 2013.
doi:10.1007/s00285-012-0540-y C302, C303

[12] F. Santonja and B. Chen-Charpentier. Uncertainty quantification in
simulations of epidemics using polynomial chaos. Computational and
Mathematical Methods in Medicine, 2012:742086, 2012.
doi:10.1155/2012/742086 C303

https://doi.org/10.1016/j.mbs.2016.03.012
https://doi.org/10.6084/m9.figshare.7699844.v1
https://doi.org/10.6084/m9.figshare.7692392.v1
https://doi.org/10.1137/S0036144500371907
https://doi.org/10.1016/j.jtbi.2014.01.014
https://doi.org/10.1098/rspa.1927.0118
https://doi.org/10.1017/S1446181112000326
https://doi.org/10.1007/s00285-012-0540-y
https://doi.org/10.1155/2012/742086


References C317

[13] Communicable Disease Surveillance Centre (Public Health Laboratory
Service) and Communicable Diseases (Scotland) Unit. Influenza in a
boarding school. BMJ, 1(6112):587, 1978. doi:10.1136/bmj.1.6112.586
C307

[14] G. Strang. Linear Algebra and Its Applications. Thomson, Brooks/Cole,
2006. C312

[15] D. Xiu. Numerical Methods for Stochastic Computations: A Spectral
Method Approach. Princeton University Press, 2010. C307

Author addresses

1. D. B. Harman, School of Environment and Science, Griffith
University, Queensland 4111, Australia.
mailto:david.harman@alumni.griffithuni.edu.au

2. P. R. Johnston, School of Environment and Science, Griffith
University, Queensland 4111, Australia.
mailto:p.johnston@griffith.edu.au

https://doi.org/10.1136/bmj.1.6112.586
mailto:david.harman@alumni.griffithuni.edu.au
mailto:p.johnston@griffith.edu.au

	Introduction
	The SIR epidemic compartment model
	Applying the stochastic Galerkin method
	Determining mean and variance from stochastic Galerkin solution

	Influenza spreading through a small boarding school
	Using a `best fit' approach
	Using the stochastic Galerkin method
	Predictions

	Conclusion
	References

