
ANZIAM J. 59 (EMAC2017) pp.C190–C204, 2018 C190

On calibrated weights in stratified sampling

D. K. Rao1 M. G. M. Khan2 G. K. Singh3

Received 19 November 2017; Revised 04 April 2018

Abstract

In this paper, we propose a calibration estimator of population mean
in stratified sampling using the known mean and variance information
from multi-auxiliary variables. The problem of determining the opti-
mum calibrated weights is formulated as an optimisation problem and
is solved using the Lagrange multiplier technique. A numerical example
with real data is presented to illustrate the computational details of the
proposed estimator. A comparison study is also carried out using real
and simulated data to evaluate the performance and the usefulness of
the proposed estimator. The study reveals that the proposed estimator
with multi-auxiliary information is the most efficient estimator of the
population mean when compared to other estimators as it provides
least estimated variance and highest gain in relative efficiency (RE).
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1 Introduction

Calibration estimation, on which the current research is conducted, dates
back to 1992. A large amount of literature is being devoted to it, gaining
significant attention in the field of survey methodology and survey practice.
It is a technique that uses available auxiliary information to improve the
precision of the survey estimates. The technique works by minimising the
chi-square distance function subject to some calibration constraints. The
notion of calibration estimators was first introduced by [1] in survey sampling.

Since then several survey statisticians have contributed to the study of
calibrated estimation in survey sampling [2, 3, 6, 10, 13, 11, 12, 15]. Singh
et al. [10] introduced the calibration approach in stratified random sampling
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where they proposed the combined generalised regression (GREG) estimator
of population mean using the known mean information from a single auxiliary
variable. Later, many authors have contributed to the theory of calibration
estimation in stratified sampling [5, 8, 7, 11, 9, 14].

The purpose of this paper is to propose a calibration estimator of population
mean in stratified sampling using the known mean and variance informa-
tion from several auxiliary variables. Our main contributions include (1)
introducing new calibration constraints; (2) generalising the problem with
multi-auxiliary variables; (3) investigating the efficiency of the proposed esti-
mators; and (4) investigating whether the information from several auxiliary
variables improves the estimate of population mean.

The problem of determining the optimum calibrated weights is formulated
as an optimisation problem that minimises the chi-square type distance,
subject to some new calibration constraints. The problem is then solved to
determine the calibrated weights using the Lagrange multiplier technique.
The computational details of the procedure are illustrated in the presence
of two auxiliary variables. A numerical example with real data is presented
to demonstrate the computational details of the proposed estimator. To
compare the efficiency gain of the proposed multivariate estimator with the
other calibration estimators a comparison study is carried out. The study
reveals that the proposed multivariate estimator is more efficient than the
other calibration estimators.

2 The Problem of Calibrated Weights

Consider that a finite population U = {1, 2, ..., i, ...,N} of size N is stratified
into L strata Uh = {1, 2, ..., i, ...,Nh} containing Nh units in hth stratum
(h = 1, 2, ...,L) such that

∑L
h=1Nh = N and let Wh = Nh/N be the stratum

weights. A sample of size n, comprising of nh units from strata, h is drawn
using simple random sampling without replacement (SRSWR). Let yhi and
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xhij denote the value of ith unit from hth stratum for the study variable y
and the jth auxiliary variable xj; j = 1, 2, ..., i, ...,p, respectively. For each
stratum, h: ȳh = 1

nh

∑nh

i=1 yhi is the sample mean of the study variable.
Assume that stratum means X̄hj =

1
Nh

∑Nh

i=1 xhij and the stratum variances

S2hj =
1

Nh − 1

∑Nh

i=1

(
xhij − X̄hj

)2
,

of all the p auxiliary variables are accurately known. The purpose of the study
is to propose a calibration estimator of the population mean Ȳ =

∑L
h=1WhȲh

where Ȳh = 1
Nh

∑Nh

i=1 yhi by using the information from p auxiliary variables
xj.

The stratified estimator of the population mean is given by

ȳst =

L∑
h=1

Whȳh. (1)

In the presence of p auxiliary variables xj; j = 1, 2, ...,p a new calibration
estimator of the population mean under stratified sampling is given by

ȳ∗st =

L∑
h=1

W∗
hȳh, (2)

where W∗
h are called the calibrated weights. The weights W∗

h are so chosen
such that the chi-square type distance function

p∑
j=1

L∑
h=1

(W∗
h −Wh)

Whqhj

2

, (3)

is minimum, subject to the calibration constraints
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L∑
h=1

W∗
h = 1, (4)

L∑
h=1

W∗
hx̄hj =

L∑
h=1

WhX̄hj; j = 1, 2, ...,p, (5)

L∑
h=1

W∗
hdhs

2
hj =

L∑
h=1

WhdhS
2
hj; j = 1, 2, ...,p, (6)

where dh = (1/nh − 1/Nh) are the weights associated with the variance,
x̄hj = 1

nh

∑nh

i=1 xhij, s
2
hj = 1

nh−1

∑nh

i=1 (xhij − x̄hj)
2 and qhj are suitably

chosen constants to obtain different forms of the estimator. Motivated by the
calibration constraint given by [14], we have proposed a similar constraint as
in (6) by introducing the weights dh.

Thus, the problem of determining the optimum calibrated weights W∗
h may

be formulated as an optimisation problem given below:

Minimize:
L∑

h=1

(W∗
h −Wh)

2

WhQh

subject to
L∑

h=1

W∗
h = 1,

L∑
h=1

W∗
hx̄hj =

L∑
h=1

WhX̄hj; j = 1, 2, ...,p,

L∑
h=1

W∗
hdhs

2
hj =

L∑
h=1

WhdhS
2
hj; j = 1, 2, ...,p,

(7)

where Qh =

(
p∑

j=1

1
qhj

)−1

are suitably chosen constants to obtain different

forms of the estimator.
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3 Determining the Optimum Calibrated
Weights

It can be seen that the objective function of problem (7) is convex and the
constraints are linear equations, hence the Lagrange multiplier technique will
yield an optimum solution. Thus we can use Lagrange multiplier technique
to solve the problem (7) and determine the optimum values of W∗

h.

Defining λ0, and λj, ϕj for j = 1, 2, ...,p, as Lagrange multipliers, the Lagrange
function is given by

φ =

L∑
h=1

(W∗
h −Wh)

2

WhQh

− 2λ0

(
L∑

h=1

W∗
h − 1

)

− 2

p∑
j=1

λj

(
L∑

h=1

Wh
∗x̄hj −

L∑
h=1

WhX̄hj

)

− 2

p∑
j=1

ϕj

(
L∑

h=1

W∗
hdhs

2
hj −

L∑
h=1

WhdhS
2
hj

)
. (8)

The necessary and sufficient conditions for solving optimum values of W∗
h are

∂φ

∂Wh
∗ =

2 (W∗
h −Wh)

WhQh

− 2λ0 − 2

p∑
j=1

λjx̄hj − 2

p∑
j=1

ϕjdhs
2
hj = 0, (9)

∂φ

∂λ0
= −2

(
L∑

h=1

W∗
h − 1

)
= 0, (10)

∂φ

∂λj
= −2

(
L∑

h=1

W∗
hx̄hj −

L∑
h=1

WhX̄hj

)
= 0, (11)
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and

∂φ

∂ϕj

= −2

(
L∑

h=1

W∗
hdhs

2
hj −

L∑
h=1

WhdhS
2
hj

)
= 0. (12)

From (9) we have

Wh
∗ =Wh +WhQh

(
λ0 +

p∑
j=1

λjx̄hj +

p∑
j=1

ϕjdhs
2
hj

)
, (13)

where λ0, λj and ϕj for j = 1, 2, ...,p will be obtained using [4] by solving a
system of nonlinear equations (10)-(12) for the given values of Wh, dh, x̄hj

and s2hj.

4 Numerical Illustration and Comparison
Study

In this section, we illustrate the computational details and demonstrate
the performance of the proposed estimator using the tobacco data (Source:
Agriculture Statistics 1999 [11]).

4.1 Numerical Illustration

In order to illustrate the computational details of the proposed estimator,
we now describe the tobacco population. The population consists of data of
N = 106 counties with three variables: area (in hectares), yield (in metric
tons) and production (in metric tons). The countries were divided into L = 10
strata and a sample of n = 40 countries using proportional allocation was
selected.
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Table 1: Population information for tobacco data.
h Nh Wh X̄h1 X̄h2 S2h1 S2h2

1 6 0.05660 3194.5 1.9733 10899652.7 0.0268
2 6 0.05660 14660.0 1.3883 584984730.0 0.2181
3 8 0.07547 18309.4 2.5563 635958094.8 0.3470
4 10 0.09434 14923.5 1.5490 209817189.2 0.2346
5 12 0.11321 5987.8 1.8317 27842810.5 0.5821
6 4 0.03774 3450.0 1.4700 5876666.7 0.1531
7 30 0.28302 11682.7 1.1150 760238523.4 0.3439
8 17 0.16038 145162.3 1.3818 124004506112.8 0.3786
9 10 0.09434 33976.1 1.7210 8340765245.4 2.0183
10 3 0.02830 1333.3 2.0867 2963333.3 0.9746

Suppose that an estimate of average production of tobacco
(
Ȳ
)
is of interest

using the two auxiliary variables x1 = area and x2 = yield. To determine the
multivariate calibrated weights and the value of the estimate of Ȳ in stratified
sampling we use the same sample units as obtained in [11] and we assume
that Qh = 1. The information needed for computation is summarised in
Table 1 and Table 2. Substituting (13) in equations (10)-(12) and solving the
system of nonlinear equations using [4] we obtain λ0 = 0.63, λ1 = 2.64× 10−6,
λ2 = −0.50, ϕ1 = −4.04 × 10−11 and ϕ2 = 3.12. The optimum calibrated
weights W∗

h are obtained and presented in Column 2 of Table 3.

The calibrated weights of other estimators to be discussed in Subsection 4.2
are also presented in Columns 3, 4, 5 and 6 of Table 3 and will be later used
for comparing the efficiency of the estimators.

Using (2), an estimate of the average production of tobacco using the proposed
estimator is given by

ȳ*
st =

L∑
h=1

W∗
hȳh = 53585.53. (14)
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Table 2: Sample information for tobacco data.
h nh x̄h1 x̄h2 s2h1 s2h2 ȳh

1 3 1304.7 1.9400 722185.3 0.0171 2592.0
2 3 29075.0 1.3767 839008125 0.4757 26763.0
3 3 5191.7 2.7933 74387858.3 0.8010 14559.7
4 3 21700.0 1.4433 6070000.0 0.7362 29900.0
5 4 6808.0 1.7875 63572981.3 1.0698 12462.5
6 2 1800.0 1.7850 1620000.0 0.0612 3375.0
7 11 24481.5 1.3209 1801653230.3 0.4824 38411.8
8 6 294809.2 1.3200 322774101004.2 0.2462 477961.8
9 3 6303.7 1.3267 59939890.3 0.0306 7480.3
10 2 350.0 1.7650 125000.0 1.3285 822.5

Table 3: Calibrated Weights for different methods.
h W∗

h W
(1)
h W

(2)
h W

(3)
h W

(4)
h

1 0.03768 0.05647 0.05758 0.06450 0.05489
2 0.07101 0.05367 0.07769 0.06075 0.07103
3 0.05720 0.07477 0.08057 0.08531 0.07624
4 0.14098 0.09069 0.12140 0.10292 0.11227
5 0.14766 0.11183 0.12330 0.12753 0.11640
6 0.02957 0.03761 0.03864 0.04296 0.03680
7 0.31456 0.27065 0.36750 0.30688 0.34223
8 0.06649 0.07597 0.06273 0.07046 0.06654
9 0.09428 0.09327 0.20212 0.10638 0.09645
10 0.04057 0.02828 0.01640 0.03231 0.02715
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4.2 Comparison Study

In this Subsection, using the tobacco data a comparison study is carried out
on the efficiency of the following calibration estimators:

1. Singh (1998) estimator, ȳ(1)
st =

L∑
h=1

W
(1)
h ȳh in [10].

2. Tracy (2003) estimator, ȳ(2)
st =

L∑
h=1

W
(2)
h ȳh in [14].

3. Singh (2003) estimator, ȳ(3)
st =

L∑
h=1

W
(3)
h ȳh in [11].

4. A univariate estimator of (2), ȳ(4)
st =

L∑
h=1

W
(4)
h ȳh where

Wh
(4) =Wh +WhQh (λ0 + λ1x̄h1 +ϕ1dhs

2
h1)

and the auxiliary variable is x1 = area.

5. Proposed multivariate estimator ȳ*
st =

L∑
h=1

W∗
hȳh in (2).

To compare the efficiency of the above estimators with respect to the stratified
estimator ȳst, we compute the measure of relative efficiency (RE) as

RE =
v̂ (ȳst)

v̂
(

ˆ̄Y
) × 100, (15)

where

v̂ (ȳst) =

L∑
h=1

W2
hdhs

2
h, (16)

is the estimated variance of ȳst, v̂
(

ˆ̄Y
)
is the estimated variance of a calibration

estimator and s2h = 1
nh−1

∑nh

i=1 (yhi − ȳh)
2. The denominator v̂

(
ˆ̄Y
)
in (15)
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Table 4: Comparison results for tobacco data.
Estimator ˆ̄Y v̂

(
ˆ̄Y
)

RE

Stratified: ȳst 95373.90 2822731121.0 100.0
Singh (1998): ȳ(1)st 54329.76 650863727.5 433.7
Tracy (2003): ȳ(2)st 54321.02 609889505.3 462.8
Singh (2003): ȳ(3)st 54132.89 569781129.3 495.4
Univariate: ȳ(4)st 53775.78 517799741.5 545.1
Proposed multivariate: ȳ∗st 53585.53 512333228.2 551.0

is computed using the lower level calibration approach (see [11]) that is by
replacing the stratum weights with the calibrated weights in equation (16).

Based on the tobacco population used in Subsection 4.1, we compare the
performance of the proposed estimator based on the two auxiliary variables
(x1= Area and x2= Yield) and other calibration estimators on the single
auxiliary variable (x1= Area). It should be noted that the true average
production of the tobacco crop for this population is Ȳ = 52444.56. In Table 4,
the Columns 2, 3 and 4 presents the estimated average production of tobacco(

ˆ̄Y
)
, the estimated variance v̂

(
ˆ̄Y
)
and the relative efficiency (RE) for different

estimators considered.

Finally, amongst all the estimators, it was found that the proposed estimator
ȳ∗st has the smallest estimated variance and highest RE. Thus, the study
reveals that the estimator ȳ∗st is the most efficient estimator of population
mean in stratified sampling using the tobacco data. The gain in efficiency of
the proposed estimator over the stratified estimator is 550.96%.

A comparison study was also carried out using a simulated data and similar
results were obtained that is the proposed estimator ȳ∗st has the least estimated
variance and highest gain in RE and hence the most efficient estimator (see
Table 5 for the results of the simulated data). The gain in efficiency of the
proposed estimator over the stratified estimator is 386.85%.
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Table 5: Comparison results for simulated data.
Estimator ˆ̄Y v̂

(
ˆ̄Y
)

RE

Stratified: ȳst 760.951 45844670263.9 100.00
Singh (1998): ȳ(1)st 760.867 45835552384.3 100.02
Tracy (2003): ȳ(2)st 760.869 45745087574.3 100.22
Singh (2003): ȳ(3)st 760.868 45832943300.4 100.03
Univariate: ȳ(4)st 760.872 11870824590.0 386.20
Proposed multivariate: ȳ∗st 760.882 11850624683.1 386.85

5 Conclusion

In surveys, the statisticians are often interested to improve the precision of
the survey estimates. The calibration approach is one such technique that
incorporates the auxiliary information in survey sampling to improve the
precision of the survey estimates.

In this paper, we considered the problem of determining the optimum cali-
brated weights and the optimum calibration estimator of population mean in
stratified sampling, when the auxiliary information (mean and/or variance)
from several variables are available. The problem is formulated as an optimi-
sation problem that seeks minimisation of the chi-square distance function,
subject to the proposed calibration constraints. The problem is then solved
using the Lagrange multiplier technique. A numerical example with a real
data are presented to illustrate the computational details of the proposed
estimator. A comparison study with a real and a simulated data is carried
out to determine the performance of the proposed estimator. The results
show that the proposed estimator is the most efficient estimator of population
mean in stratified sampling. Thus, it can be concluded that the precision of
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the survey estimates is further improved when multi-auxiliary information
(mean and/or variance) is used as proposed.
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