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Abstract

Cardiac trabeculae are thin strips of muscle within the ventricles
that can be readily excised and used to investigate contractile mechan-
ics of cardiac muscle. Recently, the Auckland Bioengineering Institute
has developed a novel cardiac myometer that simultaneously measures
force, length and shape of actively contracting isolated cardiac trabec-
ulae. Here we have developed a muscle-specific computational model
based on optical coherence tomography geometric surface data that
replicates passive mechanics of trabecula using a Guccione constitutive
relation. We hypothesised that the muscle’s surface geometry data,
in addition to force-length data, would improve the fit between the
model simulated mechanics and the experimental data. The trabecula
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model was optimised using two different objective functions (muscle
length or shape) driven by a pressure boundary condition. For both
objective functions, there was a region of optimal parameters the opti-
miser tended towards but, due to the coupling between parameters, the
ability to find the true optimal parameters was hindered. Due to the
limitations of the data, we found that the addition of surface data did
not improve parameter estimation and that using only the force-length
data provided sufficient information to produce an optimal fit.
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1 Introduction

A popular approach for investigating the mechanisms behind cardiac muscle
mechanics is the use of computational models. In this study, we developed
a computational model of passive trabecula mechanics which we used to
optimise the parameters of a modified Guccione, McCulloch, and Waldman
[6] constitutive equation. The experimental data for our study were acquired
from a preparation of rat cardiac trabecula extracted from the right ventricle of
the heart. Cardiac trabeculae are the smallest naturally arising collections of
linearly arranged heart muscle cells and are the most widely used experimental
muscle preparations for studying heart muscle. The linear nature of trabeculae
enables researchers to model stresses and strains along the length of muscle
cells.

The Auckland Bioengineering Institute (ABI) has previously developed a novel
cardiac myometer which is capable of measuring muscle force and displace-
ment (among other measurements) of a trabecula undergoing fixed-length
contractions [5]. More recently, an optical coherence tomography (OCT)
system was incorporated into the cardiac myometer for measuring the geo-
metric shape changes of cardiac trabeculae in vitro during a contraction [4].
The cardiac myometer measures the muscle displacements but the regional
stresses and muscle constitutive properties cannot be measured experimen-
tally, thus, computational models are required to interpret the experimental
observations. We have developed a muscle-specific computational model from
OCT geometric surface data that replicates passive trabecula mechanics. We
hypothesised that the use of trabecula surface geometry during parameter
estimation decrease the difference between the model predicted measurements
and the experimentally observed measurements. To the best of the authors’
knowledge, this is the first study in which experimentally obtained muscle
surface data were used to develop a computational model of cardiac trabecula
mechanics.
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2 Methods

2.1 Data Acquisition

The experimental data were collected from a single trabecula extracted from
the right ventricle of a rat. The trabecula was mounted in the cardiac
myometer via two platinum hooks which can be controlled for muscle length
and position [1]. The mounted trabecula was placed in a capillary of flowing
nutrients and oxygen for the remainder of the experiment [7]. The trabecula
was stretched to five different lengths and electrically stimulated at a frequency
of 2 Hz. The reference muscle length was 2.01 mm (75% of the maximum
length). From the reference length, the muscle was stretched to five different
lengths: 2.12 mm (80%), 2.24 mm (85%), 2.35 mm (90%), 2.46 mm (95%),
and 2.57 mm (100%). To measure the force produced by the trabecula at
each length, the downstream hook was attached to a thin stainless steel beam
whose deflection was tracked via laser diffraction. To gather the passive
force we averaged the diastolic force at each trabecula length to provide the
corresponding passive force-length relationship (Figure 1). The reference
length was taken to be stress-free and the passive forces were offset to reflect
this. The surface geometry of the trabecula was measured using OCT mounted
with a full view of the trabecula.

2.2 The Model

Finite element models have been used extensively for investigating the me-
chanics of the whole heart, but not for cardiac trabecula. Here, we developed
a finite element model of rat cardiac trabecula to investigate it’s passive me-
chanics. The geometric mesh was composed of eight cubic Lagrange 16-node
elements. The mechanical behaviour of the muscle was modelled using the
Guccione, McCulloch, and Waldman [6] constitutive equation (Section 2.3).
The mesh was fitted to the geometric data for the reference muscle length,
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Figure 1: Experimentally measured passive force-length relationship of a
cardiac trabecula. This dataset was used to parameterise the passive properties
of our computational trabecula model.

which became the reference state of the model. Initially, the OCT data’s axis
of stretching did not align with a coordinate direction in the model, so we
transformed the dataset to align the length of the muscle with the z-axis of
the model’s coordinate system. To transform the data we performed a rigid
transformation using the OCT data by minimising the root mean square error
(RMSE) between the OCT data coordinates for all extension lengths and the
model’s z-axis.

To ensure the model’s simulated passive stretching matched with the ex-
perimental observations, the constitutive properties of the trabecula were
estimated using optimisation. The model was fitted to the experimental data
by optimising the parameters of the Guccione, McCulloch, and Waldman [6]
equation using OpenCMISS [3]. The parameter set output from the optimis-
ing routine were the parameters that gave the best match between the model
prediction and the data provided and represented the mechanical properties
of our trabecula.
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2.3 The Constitutive Equation

The equation governing the constitutive behaviour of the models are a modified
version of the Guccione, McCulloch, and Waldman [6] equations for three-
dimensional transverse-isotropic cardiac tissue as described by Nash and
Hunter [8]. The strain energy function, W is defined as

W= leQ ) ()
where
Q = CQE]QCf + CS [Eis + Ein + Q(EsnEns)] + 2C4[Eannf + EfsEsf]- (2)

Q is a quadratic function of the three strain components defined with respect
to the micro-structural coordinates. E refers to components of the Green’s
strain tensor with E¢¢ representing strain in the fibre direction, and Eg4 and
E.n representing strain in the two transverse directions. All other terms in
Green’s strain tensor represent shear. C; is a universal scaling coefficient,
Cy and Cj scale the nonlinearity of the stress-strain relation in the fibre
and transverse directions, respectively, and C4 scales the shear components.
The four parameters of the Guccione constitutive equations (C; to Cy) are
empirical and give no direct interpretation of tissue properties.

2.4 Objective Functions

Using a least-squares optimiser, we explored the use of two different objective
functions to get an estimate of the constitutive properties of the trabecula,
which cannot be experimentally measured. Our Displacement Model’s objec-
tive function minimised the difference between the predicted and observed
muscle lengths while that for the Projection Model minimised the difference
between the predicted and observed muscle shape. The general form of the
error measure (f) provided to the least-squares optimiser was:

f= [Xlu X27 X37 X47 X5] )
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where
Xm =P —En. (3)

X is the error per length step m, Py, is the model prediction for length step
m (muscle length or shape), and E,, is the experimental observation for length
step m. For the Displacement Model, P,, and E,, represent muscle lengths.
For the Projection Model, they represent the geometric model surface and
the experimental OCT data, respectively. To characterise the model fits we
calculated the RMSE of f for the parameter sets obtained via the optimisation
of each objective function.

2.5 Model Verification

Before applying the objective functions to a model to match experimental
data, we first tested them on a model generated from synthetic data. Material
parameters were assigned to the synthetic model and then the model was
stretched to different, specified lengths in order to gather the nodal forces
at the end nodes for each length step. Using the synthetic length and force
data we confirmed that both of our objective functions found the assigned
material parameters via optimisation.

In addition to calculating the RMSE of our models we also conducted 4D
parameter sweeps and analysed the stress-strain properties of the trabecula
models. Of the four parameters in the modified Guccione constitutive equation,
C4 was independent of all the other parameters because the model underwent
uniaxial extension and no shear components were involved. A 4D-plot of the
RMSE as functions of the three identifiable parameters (Cq, Cy, and C3) was
constructed for each objective function to identify parameter-couplings. It is
known that there is coupling between parameters in the Guccione constitutive
equations due to its nonlinear properties. After finding a set of parameters
via optimisation, we examined the corresponding mechanical behaviour of
the trabecula by looking at the relationship between stress (Cauchy-stress
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tensor) and strain (Green-Lagrange strain tensor) in the fibre and transverse
directions.

3 Results

By varying the parameters that characterised the trabecula’s passive mechan-
ical properties, we found a region of parameter sets that minimised the fitting
error between the model and the experimental data via a gradient descent
method. We hypothesised that a model optimised to fit surface geometry
would be more accurate compared to a model optimised to fit muscle length.
However, using the surface projection errors to drive the calculation of the ob-
jective function resulted in a large discrepancy between the Projection Model’s
predicted muscle length and the observed muscle length. To characterise the
model fit, we examined each model’s muscle length error and projection error
between the OCT data and the model. For two sets of arbitrary parameters
with similar RMSE’s, the Projection Model over-predicted muscle length by
304 um for one set of parameters and under-predicted muscle length by
216 um in the other set (Table 1). To improve the model fit, we modified
the objective function of the Projection Model to also penalise differences in
muscle length. The thinking behind combining the optimisation of muscle
length and muscle geometry was that every direction would be constrained
by experimental data and would improve the model’s fit with the data. This
model was labeled the Combined Model.

For each objective function, there was an optimal combination of parame-
ters that would give rise to the smallest error between the model and the
experimental data. The optimal parameters for each model reside in a range
of plausible parameter combinations known as the parameter indifference
region. The Projection Model possessed a large parameter indifference region
because many different combinations of parameters gave rise to similar RMSE’s.
For example, a change in the mean projection error from 8.64 + 9.30 um
to 9.15 £ 9.42 wm and a change in the mean muscle length error from
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199 + 61.5 um to 182 + 68.6 um only caused a small change in the RMSE of
the Projection Model, as seen in Parameter Sets 1 and 2 of Table 1. This at-
tributed to a large parameter indifference region in which many combinations
of parameters would give rise to a similar error between the model and the
experiment.

Conversely, for comparatively smaller changes in muscle length error and
projection error the Displacement Model saw changes in the RMSE that were of
similar magnitude to those of the Projection Model (Table 1, Parameter Sets
3 and 4). This means the Displacement Model was more sensitive to changes,
and this attributed to a more defined parameter indifference region. When
we combined the Displacement and Projection Model’s objective functions to
create the Combined Model we found that the Projection Model’s insensitivity
to changes in parameters resulted in a less defined parameter indifference
region for the Combined Model when compared to the Displacement Model.
This can be seen by the dark green valleys in Figure 2 which represent portions
of each model’s parameter indifference region and correspond to parameter
sets that gave rise to the lowest RMSE. The contour plots for the Combined
Model show a more gradual descent when compared to the contour plots
for the Displacement Model, indicating a wider range of plausible parameter
sets that produce very similar stress-strain behaviours. Implementing the
Combined Model decreased the identifiability of the constitutive parameters
and also did not improve the accuracy of fitting the model to the experimental
data (Table 3). It is also possible that the insensitivity in the optimisation of
surface geometry data was because the mode of deformation performed in
the experiment was uniaxial. Since the trabecula was only deformed in the
fibre direction the force-length relationship may be sufficient information to
replicate the experiment. Both the Displacement and the Combined Models
produced stress-strain curves in the fibre and transverse directions of the
trabecula under uniaxial loading conditions with the same accuracy (Figure 3).

In order to compare our models, the optimisation for each objective function
was initialised with the same randomly generated parameters (0.024, 1.46,
1.16). The resulting optimal parameters for each model are summarised in
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Table 1: The root mean square error (RMSE), length error, and projection error for
two parameter sets chosen from the Projection Model’s parameter indifference region
(Parameter Sets 1 and 2), and two parameter sets chosen from the Displacement
Model’s parameter indifference region (Parameter Sets 3 and 4). The parameter
sets correspond to (Cy, Co, and Cs). The maximum projection error was 60.1 pm

for_all four simulations.
Parameter Set RMSE Muscle Length Max Muscle Projection

(um) Error Length Error

(nm) Error (um) (nm)
1(0.022, 1.5, 1.3) 12.69 -119461.5 -216 8.64+9.30
2 (0.017, 1.1, 1.0) 13.13 182+68.6 304 9.15+9.42
3(0.024, 1.1, 0.9) 39.09 -1.10£39.1 -71.1 8.654+9.24
4 (0.020, 1.3, 1.1) 37.21 -0.50437.2 -70.0 8.59+9.24

Table 2. There is no set of parameters reported for the Projection Model
because the optimiser was too insensitive to changes in the projection errors
and would continually stretch the muscle until it reached a set of parameters
that did not converge. As stated in the Methods section, C4 was independent
of the other three parameters because of the absence of shearing. In all of our
models we fixed C4 to a constant value of 1.083. Initial optimisations showed
that drastic changes in the value of C, had very little effect on the model,
therefore, the value C4 was of little consequence and chosen arbitrarily. The
parameters that we found via optimisation are consistent with Wang et al.
[10], Augenstein et al. [2], and Omens, MacKenna, and McCulloch [9] in that
the stiffness in the fibre direction was higher than in the transverse directions.
When comparing the parameters obtained in this study to the parameters
obtained in previous studies (Table 4) our parameters are significantly smaller.
The differences are not well understood, but possible reasons for the differences
are the variations in species and test types utilised by each study. Wang et
al. [10] used in vivo magnetic resonance imaging on a dog heart, Augenstein
et al. [2] used an isolated, arrested porcine heart, and Omens, MacKenna,
and McCulloch [9] used an isolated, arrested rat heart.
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Table 2: Optimal parameter sets obtained via optimisation of the Displacement
Model and the Combined Model along with their corresponding root mean square
error (RMSE).

Objective Function (k%a) Cs () Cs () I?:L/Inf)E
Displacement Model 0.020 1.30 0.93 37.01
Combined Model 0.021 1.27 0.90 26.82

Table 3: The root mean square error (RMSE), length error, and projection error for
the parameter sets obtained via optimisation of each objective function (Table 2).
The Projection Model is not presented because the optimiser was unable to identify
a set of optimal parameters.

Max Muscle

Ob ject.:ive RMSE Muscle Length Length Error Projection

Function (um) Error (um) (um) Error (um)
Displacement Model — 37.01 2.1+36.9 38.9 8.6+9.3
Combined Model 26.82 1.54+37.2 39.1 8.6+9.3

Table 4: Comparing the parameter set obtained using the Combined Model to
previously published parameter sets.

Study Ci(kPa) C () G () Cu()
Current Study (Combined Model) 0.016 1.63 123  1.08
Wang et al. [10] 0.831 14.3 449  0.762
Augenstein et al. [2] 3.0 1.1 1.76  10.0

Omens, MacKenna, and McCulloch |9] 1.1 9.2 2.0 3.7
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Figure 2: The three planes containing the parameters obtained via optimisation
of the Displacement Model’s (left) and the Combined Model’s (right) objective
functions. The relationships between C; and Cq (top), C; and Cs (middle), and Cy
and C3 (bottom) are shown. The darkest contours seen in the combined model’s plots
are interpolation artifacts due to the limited set of discrete parameters evaluated
when generating this plot.
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Figure 3: Stress-strain curves in the fibre (left) and transverse (right) directions
simulated using the optimal parameters from the Displacement Model and the

Combined Model.

4 Discussion

The goal of this study was to determine if adding muscle shape information
would improve the fit of a model of passive trabecula mechanics. In this study,
we fit one parameter to the fibre direction and one parameter to the transverse
directions (Cy and Cj respectively). If there is no inherent coupling in the
constitutive relation and the stiffness of the trabecula is homogeneous along
the length of the muscle, then there is one set of optimal parameters. This
was confirmed with the synthetic models, which found the same set of optimal
parameters regardless of the objective function that was employed and the
initial starting point. Unlike the synthetic models, the models created from
the experimental data did not find the same set of optimal parameters as each
other, as seen in Table 2. We attributed this to the high degree of coupling
between the parameters C; and C, and the mostly independent nature of
Cs, seen in the contour plots in Figure 2. For comparing the Displacement
and the Combined Models, we looked at the length error and the projection
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error instead of the RMSE because the RMSE is only useful for comparisons
within the same model, not between models. This was because the RMSE of
the Displacement Model was calculated using a vector of five numbers, the
length error per length step, while the RMSE of the Combined Model was
calculated using a vector of ten numbers, the length and projection errors per
length step. The presence of the projection errors in the Combined Model’s
objective function caused the RMSE of the Combined Model to be smaller
than the RMSE of the Displacement Model. This made it appear as though the
Combined Model had a lower error when in reality the two models behaved
similarly.

4.1 Combining Objective Functions

When using the Projection Model there was a high degree of insensitivity
to muscle length which we tried to constrain by penalising muscle length
error in the combined model. The discrepancy seen between the synthetic
model, which accurately matched the muscle length, and the model created
from experimental data could be attributed to several factors. The synthetic
data assumed we had an unloaded stress free state as the mechanics reference
model. For this study, we used 75% of the longest length step as the reference
state. In reality, this was not completely stress free but we had to make
that assumption given that it was the lowest length step measured in the
experiment. Another factor that could have contributed to the observed
discrepancy in muscle length was our assumption that we could measure
the end locations and displacements of the trabecula accurately. Past data
gathered on the cardiac myometer have shown that some trabeculae have
slippage around the mounting hooks causing parts of the muscles to come
into the viewing plane in the longest length steps that weren’t present in the
undeformed state. This contributes to an inaccurate measurement of muscle
displacements and end locations, and could be a reason why our Projection
Model consistently had large muscle length errors.
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R

Figure 4: The alignment between the model and the surface geometry data cloud
in the undeformed state (top) and the longest length step (bottom).

When running the Projection Model, the optimiser was less sensitive to the
stiffness in the fibre direction and had a greater sensitivity to the stiffness in
the transverse directions. This is contrary to the Displacement Model, which
was more sensitive in the fibre direction than in the transverse directions.
This was expected as the Projection Model was optimised to fit data in the
transverse directions, while the Displacement Model was optimised to fit data
in the fibre direction. The decreased sensitivity to changes in parameters
seen in the Projection Model can also be due to the discrepancy between
the model’s axis of extension and the experimental axis of extension. When
stretched to the longest length step there was a misalignment between the
two axes. Figure 4 shows the alignment of the data compared to the model
for the reference state and the longest length step and clearly shows the data
point cloud rotating out of alignment at the left end as the muscle stretches.
This can most likely be attributed to the rigid alignment of the data with
the axial direction. Since the OCT data on the muscle surface are not rigid
landmarks, using the data as a means to find the axis of extension led to
an inaccurate alignment. While the motion of the hooks can be accurately
controlled, it is possible that the muscle was not taut between the mounting
hooks in the reference state and when stretched the muscle’s position changed.
To address this alignment problem, it is required to track the motion of the
muscle, the hooks, and the linear actuator at each length.

Combining the Projection Model and the Displacement Model to create the
Combined Model did not increase the ability of our model finding the reference
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material parameters. In fact, the optimal parameters of the Combined Model
were less identifiable those of the Displacement Model. However, for the
initial parameter set optimised in this study, the Combined Model and the
Displacement Model terminated optimisation around the same region of
parameters and had similar model fits. Between the two model’s optimised
results there was only a 4.8% difference in Cy, a 3.2% difference in C,, and a
2.3% difference in Cs.

4.2 Parameter Coupling

Though we did not find one single set of optimal parameters via optimisation,
our models did find a region of possible parameter sets that gave rise to
similar muscle behaviour. The similarities seen in the stress-strain curves
produced by the two models, despite the different parameters sets evaluated,
is a characteristic of the coupling between parameters. It is known that there
is a coupling between parameters in the Guccione constitutive equations and
this can clearly be seen in Figure 2. For all of our models, there was a strong
coupling between C; and Cs, which was represented by the dark green valley
that spans diagonally from one corner to the other. For a given C3 parameter,
there were multiple sets of C; and C, combinations that gave rise to a similar
RMSE. Also seen in Figure 2 is the inability of our models to accurately
identify Cjz. This is represented in the contour plots between C; and Cj as
well as between C; and C3 by the mostly vertical dark green valley. It is
important to note that the parameter not being compared in a given contour
plot was held constant at the optimal value for all parameter combinations
shown in the plot.
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5 Conclusions

Identifying constitutive parameters of passive trabecula mechanics using OCT
data, as opposed to only force-length data, did not more reliably identify
the constitutive parameters. Also, the use of OCT data in combination
with force/pressure data did not reduce the parameter indifference region.
The coupling between parameters C; and C,, along with the high degree of
independence of Cz, made identifying one set of optimal parameters for this
muscle-specific passive trabecula mechanics model unattainable. However,
the mechanical behaviour observed in the stress-strain plots was similar for
both models. Until experiments can be conducted in which the axis of muscle
extension is meticulously tracked or maintained there is no added benefit of
constraining computational models using geometric surface data.

The next step is to create a simplified model of trabecula contraction that can
be combined with the passive model. This could be accomplished by combining
simplified versions of electrical activation, calcium dynamics, and cross-bridge
cycling models. In the future, more complex models of contractile mechanics
could explore the effects of heterogeneous activation and heterogeneous muscle
stiffness, which may more closely resemble in vivo conditions.
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