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Abstract

The Japan Agency for Marine-Earth Science and Technology con-
tributed this challenge to the 2016 Mathematics-in-Industry New
Zealand Study Group Workshop. It concerned implications of the
self-thinning rule for modelling plant population characteristics via a
partial differential equation governing the temporal evolution of the
density distribution of plants of a particular size. The self-thinning
rule is empirically observed for crowded populations under constrained
resources. We investigate the theoretical consequences of a resource
constraint on the partial differential equation of interest, and through
numerical experiments reveal a surprisingly strong link between impo-
sition of the resource constraint, and populations that evolve according
to the self-thinning rule. The result is a simple condition between
growth and mortality functions that implies self-thinning behaviour,
and motivates further mathematical investigation.
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When plant populations become crowded and resources are almost fully
utiised, the mortality of individuals is largely a consequence of competition
for scarce resources. Such competition-induced mortality is referred to as self-
thinning, as opposed to thinning that results from external factors. The self-
thinning rule [6, 10] is a relationship between the average size of individuals X
and the spatial population density p, often measured as the number of
individuals per unit area. We are not directly concerned with the spatial
arrangement of individual plants, but assume some homogenous population
density distribution f(t,x) of individuals of various sizes A < x < B, per unit
area (or for the area of interest) at some point in time:

B B
o(t) = L ft.x) dx, %(t) = ﬁj X F(t,x) dx.
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For some constant K, the self-thinning rule is
x=Kp ¢ c¢~3/2. (1)

It is not a rule that explicitly governs the evolution of p(t) and X(t): it merely
specifies the boundary of possible (p,X) combinations. Given a population
density p, values of X less that that specified by the self-thinning rule are
possible, and imply an incomplete use of available resources. Populations of
this type that are not crowded tend to evolve towards the boundary dictated
by the self-thinning rule as time progresses and they grow to use more of
the available resources. When the population does become crowded, the
self-thinning rule dictates that if the average size of individuals is to increase
(implying an increase in biomass density), then this increase must come at
the expense of the population density so that the boundary (1) is not crossed.

Section 2 discusses some simple theoretical arguments that shed light on
why (1) might apply in the presence of resource constraints. However, the
self-thinning rule is primarily an empirical observation supported by a body
of experimental biological data [4]. It is usually qualified as applying to
populations that are not just crowded, but also monospecific, or of even-
age [8, 7], although some studies considered generalisations that apply across
species mixtures [9]. The self-thinning rule is also observed in, and applied
to, sessile and mobile animal populations [3, 5]. While the universality of the
value ¢ = 3/2 has been the subject of debate in the plant literature, that is
not our concern in the present study, where we retain the freedom to alter c.

A standard model for the evolution of the population density distribu-
tion f(x,t) is that used by Hara [2]:

of(t,x) 1 0? 0
T 3 [GEX)F(E )] = M(t,x)f(t,x). (2)

Here G(t,x) and D(t,x) are, respectively, the mean and variance of the
growth rate of x; and M(t,x) is a mortality rate.

[D(t, x)f(t,x)] —

The 2016 Mathematics-in-Industry New Zealand Study Group Workshop
(MINZ) team was asked to investigate relationships between the functions G, D,
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and M of PDE (2) so that the temporal evolution of the plant population f(t, x)
obeys the self-thinning rule (1).

From the Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
problem description, values A and B can be considered isolated: we are not
concerned with recruitment of individuals via reproduction and begin with
an established population of individuals with x > A such that f(t,A) =0.
We expect that growth of young individuals dominates any diffusive effects
governed by D(t,x) that might tend to decrease plant size. As such the flux

J(t,x) = G(t,x)f(t,x) — %% [D(t,x)f(t,x)], (3)
is assumed to be essentially zero at x = A . Setting B large enough, we also
assume that f(t, B) = 0 with negligible flux at x = B. The isolation of x = B
is either due to a restricted time frame, or at longer times scales due to the
mean growth rate G being suppressed for large x, as organisms reach the
limit of their natural size.

There is some conflict between the condition that self-thinning populations
be monospecific or even-aged and the PDE (2) due to the diffusion term
incorporating D(t,x). A group of organisms which start out very similar
to one another will soon exhibit a range of different sizes due to natural
variation of their growth rates, and this effect may be significant for high
values of D(t,x). The numerical experiments of Section 3 show behaviour
consistent with the self-thinning rule arising as a result of imposition of a
resource constraint, even when D(t, x) has a significant effect or the population
distribution is initially bimodal.
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2 Resource constraints and the self-thinning
rule

Limited understanding of the self-thinning rule is gained by considering some
finite resource, such as a two-dimensional substrate, that scales in a different
manner to organism size x as a population of identical organisms grow. Let
us assume a characteristic length 1 for each plant so that the resource r taken
by each plant, and the size x of each plant, are

r=k 1%, x =Kkl (4)

for some constants k, and k,. Assuming a constant total resource R = pr,
we eliminate 1 to obtain the self-thinning rule

kXR3/2
x=Kp %2, K=—am (5)

The above is equivalent to

Ky 2/3
Should the resource r or the size x exhibit a different scaling to those shown
in (4), versions of the self-thinning rule with ¢ # 3/2 are easily derived
as above.

As pointed out by White [8] and others, a key problem with the simple
argument above is that plants and other organisms may not grow isometrically,
so that k, and k, may not remain constant as 1 varies. Various attempts
to derive self-thinning rules for particular species based on more biologically
realistic scaling arguments have been made, and often produce values of ¢
from (1) close to 3/2 [1].

As mentioned in the Introduction, these simple scaling arguments for identical
organisms are somewhat in conflict with the diffusive nature of PDE (2).
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One might consider two sub-populations of characteristic lengths 1; and 1,
but this does not lead to an equation like (5) without adding some strong
mathematical assumptions.

For a population exhibiting a continuous distribution of sizes, we assume that
organism resource use is given by r(x) so that equation (6) is generalised to

B
R = J r(x)f(t,x) dx, (7)
A

where for our purposes the organism resource use of primary interest is
r(x) = x/¢.

The self-thinning rule is a consequence of resource constraints under crowded
conditions. Rather than approach the self-thinning rule directly, there is a
more natural mathematical path to considering the compatibility of the above
resource constraint with the differential PDE (2). Differentiating the equation
for R above with respect to time,

B
0= J r(x)f(t, %) dx. (8)

A
Substituting the right-hand side of PDE (2), and carrying out integration-by-
parts twice then produces

0= [{—r(x)G — L [r(x)Dy — ' (x)D] } f(t,x) + Lr(x)D £, (t,x)] "

+ JB [T/(x)G — r(x)M + ir”(x)D] f(t, x) dx.

The boundary isolation previously discussed enables us to neglect the first

term in square brackets above. The derivation then implies that the PDE (2)

is compatible with the resource constraint (7) if the following condition is
satisfied ) .

M(t,x) = ! X)G(t,x)—f—r x)

2r(x)

D(t,x). 9)



3 Numerical experiments M371

Does the above condition on M, G and D also produce self-thinning type
behaviour in the governing PDE (2)? We explore this question computationally
in the following section.

3 Numerical experiments

To test the conjecture above concerning the link between equation (9) and
the self-thinning rule we solved the PDE (2) numerically over the domain
1 <x <100, 0<t< 1. The spatial domain was discretised into 500 nodes,
and the resulting system of ordinary differential equations was solved using
Matlab’s ode45() function with a temporal grid spacing of 0.01.

3.1 Unimodal initial condition

We start by considering an initial condition

f(0,x) = \/?exp [ —20(x —20)?], (10)

representing an population of individuals at t = 0 of approximate size x = 20.

Figure 1 shows both the evolution of f(t,x) and the resulting changes in p
and X as time progresses. Here the mean growth rate was simply G = 45,
with D = 0.02x, and M was determined according to equation (9) with the
standard values ¢ = 3/2 and 1 = x!/¢ adopted. The reference line labelled on
the second panel of Figure 1 shows the self-thinning rule (1) with ¢ =3/2,
and K chosen to intersect the first numerical result at t = 0. The numerical
results are in excellent agreement with the predictions of the self-thinning
rule despite equation (9) having been derived only by considering the resource
constraint (7).

Numerical results were obtained for all 15 pairwise combinations of the G
and D functions shown in Table 1. Whenever the initial condition was given
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Figure 1: Numerical solution of PDE (2) with unimodal initial condition (10),
G =45, D = 0.001x*, and M determined according to equation (9).
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according to (10), we observed excellent agreement with the self-thinning rule,
similar to that shown graphically in Figure 1.

Moreover, for all 15 cases, the numerical results appeared in excellent agree-
ment with the self-thinning rule even when M was determined independently
of D using

M(t,x) = —G(t, x). (11)

3.2 Bimodal initial condition

The results described above exhibit quite precise self-thinning behaviour
despite the diffusive effects in PDE (2) tending to produce organisms with
greater size variation as time progresses. We conduct a related, but more
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Table 1: Various G and D test functions used in numerical experiments.

G functions D functions
45 0.2
0.9x 0.001 x?
100 — x 02G

0.4%(10 — v/x)
100(1.1 + sin(x))

Figure 2: Numerical solution of PDE (2) with bimodal initial condition (12),
G =100 —x, D =0.2G, and M determined according to equation (11).

Density distribution Average size
80
0.06 o0
-1=0.25 60 |
~t=0.5
— —t=0.75
3 0.04 i1 40 |
= I8
S
0.02
20 ¢
— ¢=3/2 reference line
0
0 50 100 0.4 0.6 08 1
£ P

severe test of our system by adopting the initial condition:

f(0,x) = ;\/gexp [—20(x —10)*] + %\/gexp [—20(x—30)*], (12)

describing two subpopulations of distinct sizes 10 and 30 at time t =0.

Working through the 15 cases of Table 1 with this new initial condition, it is
observed that the self-thinning rule is still approximately satisfied, although
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not as accurately as illustrated in Figure 1. Typical results are shown in
Figure 2, for G = 100 —x, D = 0.2G, and M determined according to
the simpler equation (11). The relationship between (9) or (11) and the
self-thinning rule hence appears to be relatively robust when tested with a
population that does not consist of similar individuals. This is despite the
self-thinning rule usually being presented as valid only for populations of
similar organisms.

3.3 Effects of increased diffusion

The calculations described show little observable difference between imposing
the full condition (9), or condition (11) where the term involving D has been
neglected. To investigate further we conduct calculations with relatively slow
growth rates and higher values of D. The calculations of Figure 3 use the
bimodal initial condition

(0,x) = \/gexp [—20(x —30)*] + \/gexp [—20(x—50)*],  (13)

with G = (100 —x)/5 and D = 15G . The upper plots show M determined
according to (9) with the term involving D included, whereas the lower plots
define M according to (11). We observe that the final term of (9) does have
an influence in this case, and acts to generate a more accurate reproduction of
the self-thinning rule. The effect illustrated in Figure 3 appears to be typical,
but not universal for calculations where D is exaggerated.

4 Conclusion

Rather than attempt to impose the self-thinning rule directly on the PDE (2) of
interest, we found it theoretically more convenient to seek PDEs (2) that satisfy
a resource constraint (7). The self-thinning rule has been empirically observed
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Figure 3: Numerical solution of PDE (2) with bimodal initial condition (13),
G = (100 —x)/5, D = 15G. M is determined according to (9) in the upper
plots, and according to (11) in the lower plots.
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in biological populations of similar individuals under crowded conditions
where resources are scarce. However, we are aware of no clear mathematical
link between equations (1) and (7) which embody the self-thinning rule and
a resource constraint respectively.

Had the numerical experiments of Section 3 failed to exhibit behaviour
consistent with the self-thinning rule, it would not have been surprising.
Instead, we appear to observe a strong link between the consequences of (7)
and the self-thinning rule. This link is surprisingly robust when considering
populations that are not made up of similar individuals, but at times consist of
two distinct organism sizes. Diffusive effects tend to produce populations with
a variety of sizes, but the link between the self-thinning rule and the resource
constraint (7) appears quite insensitive to the term D in PDE (2), so much
so that neglecting the final term of (11) appears to have a negligible effect
in most of the cases that we considered. The link also appears to be robust
with respect to the particular value of ¢ used in equation (1), provided that
we adopt a matching r(x) = x/¢ term to define our resource constraint (7).
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