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Sampling from Gaussian Markov random fields
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Abstract

Gaussian Markov random fields (gmrfs) are important modeling
tools in statistics. They are often utilised to model spatially struc-
tured uncertainty, seasonal variation and other trends in the data.
These last two examples of gmrfs are part of a larger class of gmrfs
conditioned on linear constraints. Performing Monte Carlo Markov
Chain inference on these models requires a large number of samples
from gmrfs conditioned on linear constraints. Therefore it is vital
to have fast and efficient methods for performing these samples. This
article presents three Krylov subspace methods for sampling from a
gmrf conditioned on linear constraints based on solving a Karush–
Kuhn–Tucker, or saddle point, system.
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1 Introduction

Gaussian Markov random fields (gmrfs) are used in the statistical modeling
of a variety of phenomena. They can be used to model structured spatial
effects, seasonal variation, and other data trends. A large list of applications
of gmrfs can be found in the monograph by Rue and Held [1].

A gmrf is defined by considering a cloud of points {si}ni=1 in Rd and
defining a Gaussian random variable xi, i = 1, . . . , n at each point. These
random variables are referred to as a Gaussian Markov random field. The
joint distribution of the gmrf has the probability density function

π(x|A,b) ∝ exp

(
−1

2
xTAx + bTx

)
, (1)
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where A ∈ Rn×n is a symmetric positive semi-definite ‘precision’ matrix and
the mean µ is given by Aµ = b , that is, for invertible A, x is a normally dis-
tributed random vector with mean A−1b and covariance matrix A−1 (written
x ∼ N(A−1b,A−1)). In the applications to be considered A is large, sparse
and symmetric positive definite.

A class of gmrfs with singular ‘precision’ matrices, known as intrin-
sic gmrfs, are used in statistical modeling to remove trend components in
data [1]. Let Ã be a symmetric positive semi-definite matrix with nullity(Ã) =
k , let {n1,n2, . . . ,nk} be an orthonormal basis for N (Ã) and let N =
[n1,n2, . . . ,nk]. Then, for any y ∈ N (Ã), the improper density π(x|Ã,0)
satisfies π(x|Ã,0) = π(x + y|Ã,0); that is, the zero-mean improper gmrf
specified by ‘precision’ matrix Ã is invariant to the addition of vectors in the
nullspace of Ã. A common example is the first order random walk on a line
which has N = [e], where e is a vector of ones, and is, therefore, invariant to
constant shifts in all components [1, Chapter 3].

A more general form of these densities is found using the following ar-
gument. Let y be a zero-mean gmrf with non-singular precision matrix
Ã + αNNT , where α > 0 , then the density of y|NTy = 0 is normally dis-
tributed with mean 0 and ‘precision’ Ã. It follows that these intrinsic gmrfs
are a simple case of gmrfs conditioned on linear constraints, which are de-
noted x|Bx = c , where x is a proper gmrf with symmetric, positive definite
precision matrix A and B ∈ Rk×n has rank k [2]. In most applications the
number of constraints k is much smaller than the number of data points n.
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2 Sampling from a GMRF conditioned on

linear constraints

A sample from a gmrf conditioned on linear constraints x̃ is calculated from
an unconditional sample x from N(0,A−1) using the update formula

x̃ = x−A−1BT
(
BA−1BT

)−1
(Bx− c), (2)

where B ∈ Rk×n and c ∈ Rk. This is referred to as ‘conditioning by Kriging’
by Rue [2]. Writing equation (2) as x̃ = x− δx , the update can be found as
the solution to the linear system [3, cf. dual-Kriging equations](

A BT

B 0

)(
δx
y

)
=

(
0

Bx− c

)
. (3)

For the remainder of this article we denote this system as Λv = b and refer to
it as the Karush–Kuhn–Tucker (kkt) system, after the linear system derived
from the kkt conditions in constrained optimisation [4].

Before considering methods for computing δx, it is necessary to outline
methods for sampling from an unconditional gmrf. The standard method for
sampling from an unconditional gmrf uses the Cholesky decomposition A
to transform a vector of independently and identically distributed standard
normal variables [2]. Due to the size and sparsity of A, a Krylov subspace
method can be used to efficiently approximate the action of the inverse square
root of A on a vector of i.i.d. standard normals. This method for computing
unconditional samples was investigated by Simpson et al. [5]. Implementation
details for both of these sampling methods can be found in the papers by
Simpson et al. [5] and Rue [2]. The following proposition summarises these
two methods for sampling from an unconditional gmrf.

Proposition 1 Let x ∼ N(0,A−1) be a proper, zero-mean gmrf and let
z be a vector of i.i.d. standard normal variables. Let A = LLT be the
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Cholesky decomposition of A. Then

x1 = A−1/2z and x2 = L−Tz (4)

are (dependent) samples from x.

3 Computing the correction

A method for computing the update δx using (2) was presented by Rue [2].
This method used the Cholesky decomposition that had already been com-
puted during the unconditional sampling to solve the matrix equation

AX = BT . (5)

The update was then calculated using the formula δx = X(BX)−1z . This
corresponds to a segregated method for solving the kkt system (3) [4]. As A
and, therefore, Λ are large and sparse, it is natural to consider the use of
Krylov subspace methods to solve for the correction. This approach is a
natural extension of work presented by Simpson et al. [5].

The methods for solving the kkt system (3) are divided into two main
classes: segregated methods that solve for y and δx separately, investigated
in Sections 3.1 and 3.2; and coupled methods that solve for y and δx jointly,
investigated in Section 3.3. Benzi, Golub and Liesen [4] surveyed methods
for solving the kkt system. The main objective here is to explore the per-
formance of Krylov subspace techniques for approximating the corrections.
Two segregated methods and one coupled method are outlined in the follow-
ing sections.
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3.1 Segregated method 1: A multiple Krylov
subspace approach

The first method for solving (5) is a direct extension of the method pre-
sented by Rue [2] to Krylov subspaces. This approach solves k linear sys-
tems AX∗i = bi using Krylov subspace methods, where X∗i is the ith column
of X and BT = [b1, . . . ,bk]. From the definition of the Frobenius norm, if

the residual in the solution to each linear system satisfies ‖r(i)
m ‖2 ≤ ε , the

2-norm of the residual satisfies ‖R‖2 = ‖BT −AX‖2 ≤ ‖R‖F ≤
√
kε .

Before deriving an exact expression for ε, we first need to recall some
basic facts about Krylov subspaces. The Krylov subspace of A generated
by b is defined as Km(A,b) = span{b,Ab,A2b, . . . ,Am−1b}. This basis
for Km(A,b) given in the definition is usually a poor basis for numerical
computations and an orthonormal basis {q1,q2, . . . ,qm} is preferred. This
orthonormal basis is computed for symmetric A using the Lanczos decom-
position

AQm = QmTm + βmqm+1e
T
m , (6)

where Qm = [q1,q2, . . . ,qm], Tm = QT
mAQm is a symmetric tridiagonal

matrix, em is the mth vector in the canonical basis for Rm and QT
mqm+1 =

0 [6]. This is essentially a partial orthogonal reduction of A to a tridiagonal
form.

An approximate solution to Ax = b is xm = Qmy , where y is the
solution to Tmy = ‖b‖2e1 . This particular choice of y leads to the Conjugate
Gradient method for symmetric positive definite A and the approximate
solution xm = Qmy is optimal in the norm induced by the A-inner product
on Rn [6]. The residual satisfies ‖rm‖2 = ‖b − AQmy‖2 = βm|eTmy| and,

therefore, ε = maxi‖b(i) − Ax(i)
m ‖2 = maxi β

(i)
m |eTmy(i)|. It is possible to

calculate the norm of the residual while building the Lanczos decomposition
at little additional cost and, therefore, the subspace size m can be chosen to
ensure ε is less than a prescribed tolerance [6].
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Algorithm 1 summarises this method for calculating the correction.

Algorithm 1: A sequential Krylov subspace method for calculating
the correction to a zero-mean gmrf conditioned on linear constraints.

Input: The size of the gmrf n, the precision matrix A, the constraint
matrix BT and a tolerance ε.

Output: The constraint correction δx and X = A−1BT .
for i = 1, 2, . . . , k do1

Solve AX∗i = bi using the preconditioned conjugate gradient2

method until ‖r(i)
m ‖ ≤ ε/

√
k .

end3

Form S = BX and solve Sw = z .4

Set δx = Xw .5

3.2 Segregated method 2: a band Lanczos approach

The second method for approximating the solution to (5) exploits the fact
that k � n and builds a block Krylov subspace Km(A,BT ). This approach
uses more storage than method 1, but our numerical experiments show that
it uses fewer matrix–vector products. Analogously to the single vector case,
one computes an orthogonal basis for Km(A,BT ) using a block Lanczos de-
composition of the form

AUm = UmTm + Vm+1Tm+1,mET
m ,

where Um = [V1, . . . ,Vm] is an orthonormal for Km(A,BT ), BT = V1W
is the truncated QR-factorisation of BT , Tm = UT

mAUm ∈ Rmk×mk is a
symmetric matrix with bandwidth k + 1 , UT

mVm+1 = 0 , and Em is the last
k columns the n-dimensional identity matrix [6]. Generalising the result in
Section 3.1, the residual Rm = BT−AXm in the approximation Xm = UmY

where Y is the solution to TmY =
(
WT ,0T

)T
satisfies

‖BT −AUmY‖2 = ‖Tm+1,mET
mY‖2 ≤ ‖Tm+1,m‖2‖ET

mY‖2 .
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The extension to a restarted method is trivial and is outlined in Algo-
rithm 2.

Algorithm 2: A block-Lanczos method (Ruhe’s variant) for calculating
the correction to a zero-mean gmrf conditioned on linear constraints.

Input: The size of the gmrf n, the precision matrix A and the
constraint matrix BT .

Output: The constraint correction δx and X = A−1BT .
Set R = BT .1

repeat2

Compute QR-decomposition R = QW .3

Use Ruhe’s variant of the Block Lanczos Method [6] to form4

AUm = UmTm + Vm+1Tm+1,mE
T
m.

Calculate Y = T−1
m

(
W
0

)
.

5

Set X = X + UmY .6

Set R = Vm+1Tm+1,mE
T
mY .7

until convergence criterion is met [6] ;8

Form S = BX and solve Sw = z .9

Set δx = Xw .10

3.3 Method 3: a coupled approach

The assumption that rank(B) = k is sufficient for the kkt matrix Λ to be
nonsingular, although it is not positive definite [4]. Therefore, we consider
an iterative method for solving Λv = b . Recalling that k � n , the product
of the kkt matrix Λ with a vector is computed in, at most, C(A) + 2kn
flops, where C(A) is the cost of the matrix vector product involving A.
Due to the inexpensive matrix-vector products, the augmented linear system
can be solved using a Krylov subspace method. Unfortunately, as Λ is not
positive definite, the method described in Section 3.1 which is known as the
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full orthogonalisation method (fom) is no longer equivalent to the conjugate
gradient method and is, therefore, not necessarily the solution from Km(Λ,b)
of minimum norm. Despite this, the approximate solution generated using
fom is usually quite good. However, if we choose y to be the least squares
solution to the overdetermined linear system(

Tm

βmeTm

)
y = ‖b‖2e1 ,

where ΛQm = QmTm+βmqm+1e
T
m , the resulting approximation bm = Qmy

is optimal. This method, known as minres [7], is used in the case study.

3.4 Preconditioning

The segregated methods (Algorithms 1 and 2) are easily preconditioned using
any symmetric preconditioner for A [6]. In the tests reported in the next sec-
tion we used the incomplete Cholesky decomposition, denoted in Table 1 by
IC(0), which resulted in significant speedup over the unpreconditined system.
However, preconditioning coupled methods is a much more difficult propo-
sition. Benzi, Golub and Liesen [4] gave a nice survey of preconditioners
for the kkt system. If multiple samples are required, the cost of building a
high quality preconditioner is negligible as it is averaged out over the number
of samples. An alternative preconditioning strategy might use the spectral
information generated in the previous subspaces to build an adaptive pre-
conditioner in the spirit of Burrage and Erhel [8]. These preconditioning
methods will be investigated in future research.
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4 Case study

For this example we simulated 1000 pseudo-random points {sj}1000
i=1 in the

unit square and used the precision matrix

Aij =

{
1 + |φ|

∑
k χ{‖sk−si‖<δ} , i = j ,

−φχ{‖sj−si‖<δ} , i 6= j ,

where χA is the set indicator function [9]. The constraint matrix B ∈ R10×1000

was generated randomly and c was a random vector in the range of B.

The performance of the three methods is described in Table 1. In the
table, m is the dimension of the Krylov subspace and r is the number of
restarts performed. The importance of preconditioning the segregated meth-
ods cannot be overstated: the unpreconditioned methods require, at the
very least, one an a half times the number of matrix-vector products as their
preconditioned counterparts. The most efficient method tested (in terms of
matrix-vector products) is the coupled method 3. Even without precondi-
tioning, this method converges with m = 100 . Of the segregated methods,
it appears that, if if it is not restarted, the band-Lanczos method 2 is the
fastest of the two investigated. However, when the band-Lanczos method 2
is restarted, the number of matrix vector products required for convergence
increases rapidly. Conversely, the multiple Krylov subspace method 1 ap-
pears to require the storage of only a small number of vectors at the cost of
increasing the number of matrix-vector products.

5 Conclusion

We presented three methods for sampling from a Gaussian Markov random
field conditioned on linear constraints. The question to ask is which method
is best? As is often the case with numerical methods, there is no simple
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Table 1: Results of the three methods for calculating the correction applied
to the case study.

Method Parameters M M-V Prod Update error
1 m = 40 IC(0) 400 4e-7
1 m = 70 None 700 2e-7
2 m = 150 , r = 0 IC(0) 150 3e-7
2 m = 50 , r = 17 IC(0) 850 7e-7
2 m = 70 , r = 7 IC(0) 490 2e-7
2 m = 250 , r = 0 None 250 3e-7
2 m = 50 , r = 44 None 2200 7e-7
2 m = 70 , r = 24 None 1680 1e-7
3 m = 100 None 100 5e-7

answer. If one wishes to compute multiple, accurate samples, the segregated
methods perform best as X can be approximated to high accuracy. This is
then used to calculate additional samples for little additional cost [2]. When
selecting a segregated method, one must decide whether less storage or fewer
matrix-vector products are preferred and chose the method accordingly. If
accuracy is not important, for example if the samples are then thresholded [9],
then it may be cheaper to use the coupled method—especially if a good
preconditioner is available.

Acknowledgements: We thank Professor Gene Golub for pointing out the
link between the Schur complement reduction method and the kkt system.
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