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Abstract

This paper presents three homotopic methods to determine the
suitable topology to be simulated in dc–dc power electronic converters.
One of the proposed methods is based on Newton and hyperspheres
tracking, by using the canonical piecewise-linear model of Chua–Kang
to represent the characteristic curve of the diodes. The other two
homotopic methods are based on fixed point and Newton with uniform
variation of the homotopic parameter, by using hybrid diode models.
Numerical simulations via matlab were compared with the results
obtained from plecs, and a good agreement was found between both
simulation alternatives.
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1 Introduction

Electronic power converters are devices that continuously switch between
different circuit topologies [26, 11, 13]. In general, 2n topologies can be
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Figure 1: (a), Buck converter schematic; (b)–(d), physically possible topologies
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presented in a converter, where n is the number of semiconductors (switching
diodes and transistors), each topology is determined by the states off and
on of the switches [26, 25, 5, 8]. For example, the Buck converter depicted in
Figure 1 presents four topologies depending on the state of the transistor S
and the diode D. However, only three topologies are physically possible [10].

From the context of the simulation, it is important to determine adequately
in which topology the converter is operating for certain initial conditions [5,
8]. The determination of the appropriate topology must be made before
starting the simulation and each time a switch is detected, as a switch can
trigger the occurrence of others [11, 13, 12]. Most of the technical literature
in power electronics simulation lacks theoretical and analytical approaches to
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predict the state of the semiconductors after switching [26, 11, 13]. There
are heuristic methodologies that basically test which is the most consistent
topology of the 2n possible [26]. Alternatively, there are some analytical
approaches that work but they are not used because they are less efficient;
for instance, the extra element theorem [22]. Another analytical approach is
the compensation theorem [12], which requires tools of symbolic analysis. We
propose the use of homotopic continuation methods to predict the state of
the semiconductors after switching. The homotopy has never been used for
this purpose.

In accordance with Collins [9]: two mathematical objects are said to be
homotopic if one of them is capable of continuously deforming to the other
one [4, 17, 19]. Our proposal consists of considering a power electronic
converter as a finite set of continuous subsystems or circuit topologies where
each topology is regarded as a continuous deformation of any other topology.
Understanding each semiconductor of a converter as a variable resistor that
could take a value that tends to zero or infinity according to its state of
conduction (on, off), it might be thought that the transitions between the
different circuit topologies are the result of a homotopic process in which
the resistors associated with the semiconductors are deformed from 0 to ∞
or vice versa. For example, the Buck converter is modelled as a homotopic
system as shown in Figure 2. The transitions in Figure 2 are determined by
the deformations of the transistor resistance (RS) and the resistance of the
diode (RD).

The homotopy has already been used for other applications such as solv-
ing nonlinear partial differential equations and free boundary problems [31],
solving systems of nonlinear algebraic equations [18, 20] and dc analysis of
electrical circuits [20, 21, 24, 27, 28, 29]. However, the homotopic continuation
problems have never been used to solve the problem of detecting the proper
topology in an electronic converter after switching. Three homotopic methods
are proposed. The first one uses the canonical representation of Chua–Kang
for diode description, which is a piecewise smooth linear model (Section 3).
The remaining two homotopic methods use a hybrid diode model, which gen-
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Figure 2: Buck converter as homotopic system.
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erates a set of linear circuit topologies (Section 4). Unlike traditional heuristic
methods that use a trial and error strategy, the proposed homotopic methods
describe an intuitive explanation of how a converter transits through different
topologies. Thus, the main advantage offered by homotopic continuation
methods is that they trace a clear and deterministic path for the handling of
semiconductor switching; this feature facilitates the elaboration of the algo-
rithms. The purpose of this article is not to compare homotopic continuation
techniques with those that currently exist in terms of computational speed.
The purpose is to validate the hypothesis of how a converter is understood
as a homotopic system, and in this way to offer an alternative technique for
handling commutations, which could be optimised in the future.

Figure 3 depicts the proposed simulation scheme. The first step is to read the
parameters and the description of the circuit through a schematic diagram or
a netlist. Then the equations of the system are generated by modified nodal
analysis [25]. Subsequently, the most suitable circuit topology is calculated
by means of a homotopic continuation technique. Finally, the system of
equations is integrated until some commutation occurs [12, 11]. After the
detection of the switching, the cycle must be repeated; first calculating a
new topology and then integrating it until the integration time ends. This
article focuses on the task of finding the appropriate topology to simulate an
electronic converter; given some initial conditions (dashed block, Figure 3).
The tasks of generating the equations of the system and integrating them
numerically have been studied extensively [25, 26, 16].

To validate the proposed homotopic methods, some simulations of three
converters have been replicated: Boost [2], Boost–Flyback [14] and a Boost
of high gain [30]. We performed matlab-based simulations using the three
proposed homotopic algorithms for handling commutations. We also im-
plemented in matlab the trial and error algorithm proposed by Gallo [15].
Finally, the converters were implemented in the commercial plecs software,
which is a simulator of electrical circuits specialised in power electronics [26].
plecs is a hybrid simulator that generates each circuit topology as switching
is detected by means of a switch manager. For a better understanding of
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Figure 3: Simulation scheme.
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plecs see Alimeling [1]. Section 5 presents a time simulation comparison.

2 Continuation methods and homotopic path
tracking

This section provides a brief description of Newton and fixed point homotopies
as well as explaining the technique of hyperspheres path tracking.

In general terms, homotopy is used to solve systems of nonlinear algebraic
equations of the form

f(x) = 0, f ∈ Rn → Rn. (1)

The homotopic continuation methods perturb the system f(x) by adding a
homotopic parameter λ and a function G(x) whose solution is known or easily
calculable. In this way, a continuation problem is expressed as

H (f(x), λ) = λf(x) + (1− λ)G(x) = 0 , H ∈ Rn × R→ Rn. (2)

By solving (2), a set of solutions that describe the homotopic curve is obtained.
Figure 4 illustrates these solutions.

If λ = 0 , then H (f(x), 0) = G(x); which means that the solution of the system
is trivial or easy to calculate. In contrast, if λ = 1 , then H (f(x), 1) = f(x);
which represents the left-hand side of the original system. This means that
the solutions of the original system coincide with the intersection of the
homotopic curve when λ = 1 .

There are different ways to obtain a function G(x) that has a trivial solution.
For example, if g(x) = x− xi , then a fixed point homotopy is obtained:

H (f(x), λ) = λf(x) + (1− λ) (x− xi) = 0 , (3)



2 Continuation methods and homotopic path tracking E33

Figure 4: Homotopic curve: x∗1 and x∗2 are the solutions of the system.
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where xi is any initial condition where the homotopic curve begins. Another
alternative for is G(x) = f(x) − f(xi); generating the Newton homotopy,

H (f(x), λ) = f(x) + (λ− 1) f(xi) = 0 . (4)

In both, the fixed-point and Newton homotopy, the resulting system has
n equations and n + 1 variables. An alternative to solve the problem of
continuation is to gradually vary the parameter λ from 0 to 1 in order to find
the solution of the system. Another alternative used in dc circuit analysis is
to propose a last equation that corresponds to a hypersphere [27, 24, 28],

S (x1, x2, · · · , xn+1) = (x1 − c1)
2
+ (x2 − c2)

2
+ · · ·

+ (xn+1 − cn+1)
2
− r2 = 0 . (5)

where xn+1 = λ , r and c are the radius and centre of the hypersphere.
Adding (5) to the continuation problem H (f(x), λ) = 0 , an increased system
of algebraic equations is obtained:

H (f(x), λ) = 0 , and Sk (x, λ) = 0 . (6)
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Figure 5: Hyperspheres homotopic path tracking.
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A homotopic curve is traced by solving (6) as shown graphically in Figure 5.
In accordance with this solution strategy, each hypersphere must be individ-
ually solved and the obtained data must be used as the centre of the next
hypersphere. The subscript k refers to kth hypersphere. The path tracking
procedure consists of two steps: a predictive and a corrective. Figure 5(b)
describes the predictive procedure [27] whose basic idea is explained as follows:
with the centres of two previous hyperspheres (O1 and O2), a vector that
estimates the centre of the next hypersphere (Ô3) is calculated. Then, a
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corrective procedure, which consists of solving the system (6) is applied. It
is possible that when the homotopic curve crosses λ = 1 the centre of the
hypersphere does not exactly coincide with that point. In this case, system (1)
must be solved to accurately determine the root of the original system; another
alternative is to use any interpolation algorithm.

3 Hyperspheres homotopic path tracking
algorithm for piecewise linear circuits
simulations

In this section the problem of hyperspheres homotopic path tracking is applied
to the prediction of the state of the switches (transistors and diodes) in power
electronic converters whose diodes are modelled as piecewise linear resistors [7].
Section 3.1 explains briefly the diode model wich is based on the canonical
piecewise representation of Chua–Kang. Section 3.2 presents the proposed
homotopic method. Some illustrative examples are given in Section 3.3.

3.1 Piecewise linear model of Chua–Kang

This homotopic technique uses the canonical piecewise linear model of Chua–
Kang to describe the characteristic V-I curve of the diode [6]. Figure 6 depicts
a piecewise linear curve composed by two straight lines and a break point at
the origin. This curve represents a two-line segment approximation of a diode.
The first straight line is defined in the interval (−∞, 0] with a slope 1/RB,
where RB is a very large resistance related with the blocking state of the diode.
The second straight line is defined in the interval [0,∞) with a slope 1/RC,
where RC is a very small resistance associated with the conducting state of the
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Figure 6: Diode characteristic curve.
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3.2 Newton homotopy with hyperspheres path
tracking

Here, a homotopic technique is proposed in order to detect the state of the
semiconductors after switching. Given a commutation in a converter, it is
possible to determine the state of the semiconductors by solving the following
homotopic continuation problem:

H (x, λ) = fC (x) + (λ− 1) fC (xi) = 0 ,
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Sk (x, λ) = (x1 − ck1)
2
+ (x2 − ck2)

2
+ · · ·

+ (xn − ckn)
2
+
(
λ− ckn+1

)2
− r2 = 0 , (8)

where fC is the system of algebraic equations that models the converter;
k ∈ {1, 2, . . . ,m}; m is the number of hyperspheres; ck is the centre of the
kth hypersphere; r is the radius of the hyperspheres; xi is the initial condition
of the homotopic continuation problem; this value is selected according to the
criteria established by Ramirez-Pinero [24]. The basic idea of this technique
is to select initial voltages and currents that are equal or superior to the
maximum sources of voltage and current presented in the circuit. For example,
in a step-up converter all initial voltages must be equal or greater than the
output voltage.

3.3 Cases of study

In order to test the proposed homotopic tracking technique, two cases of study
are presented: the Boost and Boost–Flyback converters. In these circuits,
only the nodal voltages are of interest since basically these determine the
commutations of diodes. For both circuits, we set the resistance of conduction
and blocking of the diodes to RC = 1µΩ and RB = 1MΩ.

3.3.1 Boost converter

Boost converter is capable of raising voltage levels [2, 3]. Figure 7 shows the
schematic diagram of the Boost converter. The control law that determines
the switching of the transistor and parameters were taken from El Aroudi [2].
The control law is

U =

{
1 if VC > VS ,

0 if VC < VS ,
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Figure 7: Boost converter.
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Here, A is a voltage gain, and Vl and Vu are respectively the minimum and
maximum voltage that a control signal can take. The sawtooth signal behaves
as shown in Figure 8 and is

y = sawtooth
(
2π
t

T

)
. (9)

The sawtooth signal has a periodic behaviour similar to a sine or cosine
signal. Furthermore, this function is defined in the same way as it operates in
matlab. The parameters of the circuit are Vin = 30V, R = 22Ω, L = 20mH,
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Figure 8: Sawtooth signal.

1

−1

t
0

T 2T

y

C = 47µF, T = 400µs, Vl = 3.8V, Vu = 8.2V, and A = 8.4 . It is important
to try to make the radius of the hyperspheres as large as possible to accelerate
the simulations, we found that with r = 0.3 stable simulations were obtained.
Three cycles of T = 0.4ms were simulated with the following initial conditions:
VC0 = 8.12V, IL0 = 0.04A. These initial conditions are contained in a quasi-
periodic orbit [2]. Figure 9(a)(c)(e)(g) illustrate simulations over time; the red
marks denote the points at which the switching of some semiconductor occurs.
There were altogether six commutations, for each of them the homotopic
continuation problem was solved to find the next circuit topology. However,
only the results of the homotopic continuation are illustrated for one of
the six commutations. The black circumference encloses the commutation
occurred in 0.8ms, for this instant of time the homotopic procedure has been
illustrated to find the next state of the semiconductors, Figure 9(b)(d)(f)(h).
The initial conditions of the homotopic problem should be set equal to or
greater than the values of the voltage and current sources, as established
by Ramirez–Pinero [24]. All voltages of the homotopic problem start at
the output voltage and, by means of the homotopic continuation technique,
they converge to their final value in λ = 1 ; these final values correspond
to those observed in the temporal simulations and determine the state of
the semiconductors. For example, for voltage V3 Figure 9(e)(f) shows that
just before a commutation, in t = 0.8− ms, the voltage was around 7V. At
the end of the homotopic process, in λ = 1 , the voltage reaches its final
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Figure 9: Time simulation of the Boost converter: (a)(c)(e)(g), red circles,
switching points; (b)(d)(f)(h), homotopic continuation for detect next circuit
topology in t = 0.8ms.
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Table 1: Table of time transitions of the Boost converter.
Next Topology

Time [ms] Switching element D S

0.1353 S 1 0

0.4000 S 0 1

0.5796 S 1 0

0.8000 S 0 1

1.0000 S 1 0

value of V3 (t = 0.8+ ms) = 0V. Table 1 describes chronologically the devices
that switched and the topologies to which it was transited by means of the
homotopic procedure. All simulations were also performed in plecs obtaining
closely similar results.

3.3.2 Boost–Flyback converter

Boost–Flyback converter is capable of raising voltages with good efficiency
(about 90%) [14, 23]. Figure 10 shows the schematic of the Boost–Flyback
converter. In this example, the circuit parameters were taken from Flo-
rez [14]. The converter was simulated in open loop at a 50% duty cycle.
The parameters of the circuit are Vin = 5V, R =

[
1.27Ω 2.7Ω 100Ω

]
,

L =
[
183µH 724µH

]
, magnetic coupling constant k = 0.996 , T = 200µs,

C =
[
220µF 220µF

]
. A radius r = 0.1 was used for the homotopic tracing

routines. A single cycle of T = 200µs was simulated with the following initial
conditions: VC0 =

[
8.38V 6.62V

]
, IL0 =

[
0A 0A

]
.

Time simulations are shown in Figure 11(a)(c)(e)(g)(i) and Figure 12(b)(d).
Some switch marks (red dots) overlap, this is because the occurrence of
some events could be very close in time (Table 2). The black circumference
encloses the commutation occurred in 0.1ms; for that instant the homotopic
continuation routines have been illustrated to detect the next topology, Fig-
ure 11(b)(d)(f)(h) and Figure 12(a)(c)(e). As in the previous case study (Sec-
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Figure 10: Boost–Flyback converter.
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tion 3.3.1), all the voltages start at the output voltage and by means of the
homotopy converge to their final value in λ = 1 ; these final values correspond
to those observed in the time simulations and determine the state of the
semiconductors. Table 2 describes chronologically the devices that switched
and the topologies to which it was transited. Similarly, as in the previous
example, all simulations were contrasted with plecs obtaining practically
the same results.
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Figure 11: (a)(c)(e)(g)(i), time simulation of the Boost–Flyback converter
where red circlesare switching points; (b)(d)(f)(h), homotopic continuation
for detect next circuit topology in t = 0.8ms.
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Figure 12: (b)(d), time simulation of the Boost–Flyback converter where r
circles are switching points. (a)(c)(e), homotopic continuation for detect next
circuit topology in t = 0.8ms.
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Table 2: Table of time transitions of the Boost–Flyback converter.
Next Topology

Time[ms] Switching element D2 D1 S

0.0999 S 0 1 0

0.1000 D2 1 1 0

0.1912 D1 1 0 0

0.1955 D2 0 0 0

4 Hybrid homotopy

In this section two homotopic continuation techniques are proposed for elec-
tronic converters whose diodes are modelled using hybrid systems; this
implies the occurrence of 2n circuit topologies, where n is the number
of semiconductors.

4.1 Newton and fixed point homotopy with tracking
by uniform variation of parameter

Two homotopic continuation methodologies are presented to detect the proper
topology of a converter after some switching has occurred. Both method-
ologies require the prior knowledge of the device that has been switched.
Commutations are of two types: increasing and decreasing. Increasing com-
mutations occur when the device was in the conducting state and switch to
the blocking state, assuming an increase of the resistance associated with
the semiconductor device. An inverse reasoning is done to determine the
decreasing commutations. Given that RI is the resistance of the switching
device (RI ∈ {RT , RD1 , RD2 , . . . , RDND}), where ND is the number of diodes in
the circuit, the law that determines the value of this resistance with respect
to homotopic parameter λ is defined as

RI = λRf + (1− λ)Ri . (10)
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Here, Ri and Rf are respectively the initial and final resistances that the
semiconductor takes. If the switching is increasing, then Ri = RC and
Rf = RB , otherwise Ri = RB and Rf = RC . RB and RC are respectively a very
large and a very small resistance associated with the conducting and blocking
states of the semiconductor device that switches. The methodology for the
hybrid simulation is that by Gallo [15]. The system of algebraic equations
that model the converter is

fHyb (x) = Jkx+U = 0 , (11)

where x =
[
V IV IC

]
, V is a vector of nodal voltages, IV is a vector of the

currents of the voltage sources, and IC is the vector of the currents of the
capacitors. Jk and U are matrices obtained by modified nodal analysis of the
circuit in the kth circuit topology [15]. k is the circuit topology in which the
converter is operating. Each topology is linear; however, since the system is
made up of several topologies that switch between them, the nature of the
global system is nonlinear due to the commutations. In this way a fixed-point
homotopy is proposed as

H (x, λ) = λfHyb (x) + (1− λ) (x− xi) . (12)

A Newton homotopy is also proposed as

H (x, λ) = fHyb (x) + (λ− 1) fHyb (xi) . (13)

where xi is the initial condition just before of switching. Parameter λ increases
from λ = 0 to λ = 1 with steps of ∆λ, λ ∈

[
0 ∆λ 2∆λ · · · 1

]
. For each λ

increment the resistance of the switching device (RI) varies according to (10),
deforming a little bit the system (11) and the continuation problem that is
being solved: fixed point (12) or Newton (13). Once the continuation problem
is solved for a value of λ determined, it should be assessed if one or more
of the semiconductors have switched. If there is any switching, then a new
topology k has been found. The initial conditions xi must also be recalculated
and restarted the continuation problem from λ = 0 and with Ri started at
the last value that took RI.
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Figure 13: boost converter of high gain of voltage level.
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4.2 Case of study: boost converter of high gain of
voltage level

This converter is capable of raising voltages at higher levels than a conventional
boost converter and using low duty cycles (about 30%) [30]. Figure 13 depicts
the schematic diagram of this converter. The parameters were taken from
Zhang [30], considering a duty cycle of 30% in simulations. The parameter
values are Vin = 20V, R = 200Ω, L =

[
330µH 330µH 330µH 330µH

]
,

C =
[
470µF 470µF 470µF

]
, T = 20µs. For the homotopic routines a step

size of ∆λ = 0.1 was used. A simulation of two periods of T = 20µs was per-
formed with the initial conditions VC0 =

[
−119.96V 139.99V 259.95V

]
,

and IL0 =
[
11.77A 11.77A 11.75A 11.75A

]
. We set the resistance of

conduction and blocking of the diodes and the transistor in RC = 1µΩ and
RB = 1MΩ.

Figure 14(a)(c)(e)(g)(i) and Figure 15(b)(d)(f)(h) illustrate the voltages of
the nine nodes. The red points mark the commutations, which are detailed
chronologically in Table 3. The black circle encloses the switching point
for which the homotopic process has been illustrated to calculate the next
topology. Figure 14(b)(d)(f)(h) and Figure 15(a)(c)(e)(g)(i) illustrate the
homotopic process performed at the instant t = 20µs. The magenta dots
mark the commutations occurring in the homotopic process by varying λ.
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Figure 14: (a)(c)(e)(g)(i), time simulation of the boost converter of high gain of
voltage level, where red and magenta circles are switching points. (b)(d)(f)(h),
homotopic continuation for detect next circuit topology in t = 20µs.
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Figure 15: (b)(d)(f)(h), time simulation of the boost converter of high
gain of voltage level, where red and magenta circles are switching points.
(a)(c)(e)(g)(i), homotopic continuation for detect next circuit topology in
t = 20µs.
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Table 3: Time transitions of the boost converter of high gain of voltage level.
Next topology

Time [µs] Switching device D8 D7 D6 D5 D4 D3 D2 D1 S

6.00 S 0 0 1 0 1 0 1 0 0

16.92 D8 1 0 1 0 1 0 1 0 0

20.00 S 0 1 0 1 0 1 0 1 1

26.00 S 0 0 1 0 1 0 1 0 0

36.92 D8 1 0 1 0 1 0 1 0 0

Table 4: Homotopic transitions of the boost converter of high gain of voltage
level.

Next topology
λ Switching device D8 D7 D6 D5 D4 D3 D2 D1 S

0.90 D4, D8 0 0 1 0 0 0 1 0 1

0.00 D1, D3, D5, D7 0 1 1 1 0 1 1 1 1

0.00 D2, D6 0 1 0 1 0 1 0 1 1

The homotopy starts at the value taken by each voltage before the switching
and ends at the value taken after the switching. This is more clearly in those
voltages that change abruptly; for instance V2, Figure 14(c)(d), the voltage
just before the commutation analyzed (t = 20− µs) is V2 (t = 20− µs) = 80V,
value in which it also initiates the homotopic process. By varying λ three
commutations are presented, first for λ = 0.9 and then two commutations
for λ = 0 (Table 4). At the end of the homotopy at λ = 1 , the final value
of V2 (t = 20+ µs) = 20V is obtained. This value is observed both in the
homotopic and in the time simulation. Both the Newton homotopy and
fixed-point homotopy were performed, obtaining exactly the same results for
the switching point shown in t = 20µs; for that reason only a homotopy
image is presented for each node voltage. All simulations were also performed
in plecs obtaining practically the same results.
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Table 5: Computational time (seconds) of each homotopic algorithm, and for
each converter.

Algorithm Boost Boost–flyback High gain boost
Newton with hyperspheres 10.32 5.71 −
Hybrid Newton 2.77 1.05 1.61

Hybrid fixed point 2.75 1.01 1.58

Traditional 2.38 0.95 1.55

5 Simulation time comparative

We validated that the voltage signals obtained by homotopic simulations are
similar to the signals obtained by the commercial simulator plecs. Since
the homotopic simulations have been implemented in matlab code, the
computation time is always greater for the algorithms made in matlab.
However, with the aim of making a comparison in terms of execution times, we
implemented the algorithm for the handling of switches presented by Gallo [15].
The main objective of this article is not to make comparisons of execution
times, but to offer an alternative to the handling of the commutations.

Table 5 presents the time spent in the simulation of each converter with
each one of the homotopic techniques and the traditional one reported in the
literature. All algorithms, including the traditional one, were elaborated in
matlab to make comparisons fairer. The algorithm of Newton with hyper-
spheres has the longest simulation times for all the converters. The traditional
algorithm has the best time, followed closely by the hybrid algorithms.

6 Conclusion

Three homotopic continuation methods were presented for determining the
state of switches (diodes and transistor) in power electronic converters after
some switching occurrence. These methods describe an intuitive explanation
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of how a converter transits through different topologies. Thus, the main
advantage offered by homotopic continuation methods is that they trace a
clear and deterministic path for the handling of commutations.

The first method used a diode model based on the canonical piecewise linear
representation of Chua–Kang. In this proposal, the homotopic tracking was
done by means of hyperspheres. The technique was successfully tested on
the Boost and Boost–Flyback converters. However, it did not work properly
on the high gain Boost converter. The failure is presumed to be due to the
high number of diodes (eight). The conventional Boost converter has a single
diode, the Boost–Flyback has two and the high gain Boost has eight; which
implies a greater number of non-smooth functions that enter the model and
that must be solved by the algorithm of Newton–Raphson. The other two
implemented homotopic methods employed hybrid models and a uniform
parametric sweep, which generated a set of linear topologies that were easy
to solve in contrast to the nonlinear models of the first homotopic method.
The last two methods could successfully simulate all the proposed converters;
however, only the results of the high gain boost converter were shown, which
is much more complex and interesting to analyse. In order to validate our
proposals, numerical simulations via matlab were compared with the results
obtained from plecs, and a good correlation was found with our simulation
alternatives.

The first method has proven to be a good choice in the dc analysis of
nonlinear electronic circuits. However, for the specific case of electronic
converters, it does not seem to be the best alternative. This is because, until
now, the simulation results showed that the homotopic tracing by means of
hyperspheres had convergence problems for converters of more than three
switches. In addition, it was the slowest method of the three studied. On
the other hand, the last two methods were able to adequately simulate all
the converters. They also presented better times with respect to the first
method. The last two methods require hybrid models of the diode. Current
commercial simulators specialising in power electronics also use hybrid models.
The hybrid models of the diodes generate a set of circuit topologies, which
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increases the complexity of the problem. However, each topology is easier
to solve individually because it is usually linear in nature, even though the
global system is nonlinear.

Regarding the radius of the hyperspheres in the first method, there is still
no clear criterion for their estimation. We established its size by numeri-
cal experimentation. Therefore, establishing the radius of the hyperspheres
systematically is an open problem. The same occurs for the step size determi-
nation of the homotopic parameter in the last two methods.

The obtained results support the hypothesis that a power electronic converter
is understood as a finite set of continuous subsystems or circuit topolo-
gies, where each topology is regarded as a continuous deformation of any
other topology.
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