
ANZIAM J. 59 (MISG2016) pp.M1–M29, 2019 M1

Estimating Transonic Drag
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Abstract

To predict the trajectory of projectiles such as bullets and mortar
shells, we require knowledge of the acting forces, including drag. For
the most part, the drag coefficient (which is dependent on the local
Mach number) is well-understood for subsonic and supersonic velocities.
However, there is often a rapid and unintuitive change in the drag
behaviour near the speed of sound. The transonic behaviour of the
projectiles is addressed in two major ways. First we explain the
underlying physics of drag in the three major regimes. The appearance
of shock waves alters the drag forces dramatically. In some situations,
the physical models are simplified to directly obtain the drag coefficient
profile. Then we tackle an inverse problem, where firing table data
gives the drag coefficient profile. The drag profile obtained by both
point-by-point optimisation and by parametrising a suitable family of
functions. Finally, transonic data is difficult to obtain in wind-tunnel
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experiments, so based on our understanding of the physics, alternative
experiments are suggested. This research was undertaken as part of the
2017 Mathematics in Industry Study Group (Adelaide) with industry
partner, the Defence Science and Technology group.
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1 Introduction

We are interested in determining the trajectory of a projectile when it is shot
from a gun or artillery. The trajectory of such a projectile is affected by
gravity and drag forces. There can also be transverse forces and torque but,
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for simplicity, we are interested in axisymmetric projectiles and therefore do
not consider them. To state the mathematical model, we define u = (u, v,w)
to be the projectile velocity vector, x = (x, y, z) to be the projectile position
vector where z is in the vertical direction, m to be mass of the projectile, t to
be the time, Fg to be the gravitational force, and Fd to be the drag force.
The governing equations are therefore

m
du

dt
= Fg + Fd ,

dx

dt
= u . (1)

The gravitational force is straightforward and the focus of this project is to
determine the drag force. In particular, data exists in several forms that
documents the flight of the projectile in different scenarios, including different
initial velocities and initial angles to the vertical. The main aim of this project
is to determine the drag force from this data and hence enable predictions to
be accurately made in other circumstances.

The drag force exerted on a projectile is determined by the flow of air around
it. For simplicity we assume that the air is stationary and that the projectile
moves parallel to its axis of symmetry. Hence the drag is a function of the
velocity of the projectile. The drag force acts in the direction opposite to the
velocity. Hence Fd must be of the form

Fd = −K
u

|u|
, (2)

where K is a scalar quantity that depends on physical parameters, and typically
also depend on |u|. This is consistent with the well-known drag equation,

Fd = −
1

2
AρaCdu|u|, (3)

where A is the cross-sectional area of the projectile viewed from the the front
and ρa is the density of the air. The drag coefficient, Cd, may be dependent
on the velocity via the dimensionless Reynold’s number,

Re =
L|u|

ν
, (4)
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where L is the length of the projectile and ν is the kinematic viscosity of
the air. At subsonic speeds and low Reynolds numbers, the air flow remains
laminar until separation and Cd is inversely proportional to Re, so the
drag force is proportional to |u| [3]. At subsonic speeds and high Reynolds
numbers, turbulent flow is seen within boundary layers and the wake. The
drag coefficient becomes approximately independent of Re, and the drag
force is then proportional to |u|2. For transonic and supersonic velocities,
the behaviour of Cd changes yet again, which we explore in this paper. The
projectiles of interest travel with a high Reynolds number regime, so we start
by noting that the subsonic drag coefficient is approximately constant.

It is the function Cd which is the main focus of this report; particularly, how
it changes with with the local speed of sound. As the projectile travels, the
density of the air may change, particularly in the vertical direction, as these
projectiles may reach altitudes of several kilometres, and so the local speed
of sound may change.

We now explain the fluid motion around the projectile. The equations of
interest are

m
d(u, v,w)

dt
= m(0, 0,−g) −

1

2
AρaCd

√
u2 + v2 +w2(u, v,w), (5)

d(x, y, z)

dt
= (u, v,w) . (6)

Without loss of generality, the problem is simplified to motion in a single
vertical plane and hence we consider just the motion in the (x, z)-plane and
neglect the y behaviour.

The drag function Cd depends on the detailed geometry of the projectile, as
well as how fast the projectile is travelling through the air. Crucially, the
high speed of the projectiles is such that compressible effects in the air are
important. Taking the air locally to the projectile to have a speed of sound c,
which depends on z because both pressure and density of the air change with
height, Cd is determined by the local Mach number, defined as

M = |u|/c(z). (7)
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Figure 1: An experimentally
derived Cd profile as a function of
the Mach number, M, for the .50
calibre ball M33 projectile [7].
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For any projectile it is possible to determine Cd(M) from three main sources:

1. wind tunnel measurements in various conditions,

2. calculation of the fluid dynamic behaviour around the projectile and

3. using projectile path data to infer the drag coefficient.

Figure 1 shows a typical Cd(M) profile (from experimental data [7]) which
shows that Cd is constant for subsonic speeds, has a sharp transonic rise,
and then decreasing for modest supersonic speeds (Cd ∝ 1/M). McCoy
(2012) published a collection of drag profiles for many different projectiles [6].
Because source 1 is not available for many projectiles of interest, we consider
some ideas that come from source 2 but direct most of our attention to
source 3. The main aim of this work is to use data about the projectile path
in order to extract the function Cd(M). To assist this, we assume that the
properties of the air were well-known (pressure, density and hence speed of
sound, as functions of height).

2 The physics of steady aerodynamics

There is extensive literature on using the flow of air around objects to calculate
the resulting forces [2, e.g.]. For the projectiles here we are interested in the
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steady flow of air over axisymmetric objects and concentrate on determining
the drag that is induced. The main mathematical tools exploited in order to
understand the behaviour are those related to slender projectiles. In all cases
of interest the Reynolds number is very large and hence, away from boundary
layers, we consider a compressible inviscid fluid, although there are some issues
related to separation that are sensitive to viscous behaviour. The flow is taken
to be quasi-static where the air properties around the projectile are assumed
to be uniform but may vary slowly with time. The convention is to consider
a coordinate system moving at the steady speed of the projectile and hence,
in addition to the geometry of the projectile the main parameter of interest is
the Mach number of the oncoming undisturbed flow. The general behaviour
of the flow is then crucially dependent on whether the Mach number, M, is
less than unity (subsonic), greater than unity (supersonic) or close to unity
(transonic). There is a body of literature for the background theory [5, 8, 4]
and computational fluid dynamics [1].

For the remainder of the chapter, we examine each of the different regimes of
the flow behaviour and only consider the case of a slender projectile so the
flow equations are simplified.

2.1 Subsonic flow (M < 1)

The velocity of air is described by the wave equation,

∇2φ =
1

c2
∂2φ

∂t2
, (8)

where u = ∇φ . This arises from the linearisation of the governing Euler,
continuity and energy equations of an ideal gas [8]. For a moving coordinate
system travelling at the projectile speed, U, the resulting modified wave
pde [8, 9] is

∇2φ =
1

c2

(
∂

∂t
+U

∂

∂x

)2
φ . (9)
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Figure 2: Approximate flow field
(dotted region is the wake) and
the distribution of the pressure
coefficient for subsonic flow.
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For steady flow over an axisymmetric particle, the governing pde of interest
is then

(1−M2)
∂2φ

∂x2
+
1

r

∂

∂r

(
r
∂φ

∂r

)
= 0 , (10)

where M = U/c .

At subsonic speeds, M < 1 so (10) is elliptic. Therefore the flow is affected
everywhere by the shape of the projectile. A simple rescaling of lengths then
dictates the behaviour is governed by Laplace’s equation. Central to the
behaviour is the boundary layer which separates from the projectile at some
point (if it does not, then the drag on the projectile may become zero—called
D’Alembert’s paradox). The base of the projectile has a sharp rim which
ensures that separation occurs. In the separated region (the “wake”) the
pressure will be nearly constant and needs to be determined separately.

Figure 2 shows the basic flow and that the main contribution to the drag is a
high pressure region near the nose of the projectile and a low pressure at the
rear due to separation and the wake. An approximate formula for the drag is

Cd ∝
∫
(p× surface slope)dS ≈ constant; (11)
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the pressure coefficient is
Cp =

p− p∞
ρ∞U2/2 , (12)

where p is the pressure at the point, p∞ is the pressure in the oncoming
freestream, ρ∞ is the freestream fluid density, and U∞ is the freestream
velocity of the fluid [9]. In practice it is found that Cd slowly varies with
Mach number in this regime, as seen in many profiles [6].

The assumptions used to derive the pde (10) no longer apply as M → 1 .
In this limit, the coefficient of the x derivative becomes small and discarded
nonlinear terms become important to maintain the energy balance. Thus, to
explain transonic behaviour, where M→ 1 , more care is needed, as we show
in Section 2.3.

2.2 Supersonic flow (M > 1)

If the projectile is travelling fast enough, then the oncoming flow is supersonic
and the velocity potential φ satisfies the linear pde

B2
∂2φ

∂x2
−
1

r

∂

∂r

(
r
∂φ

∂r

)
= 0 , (13)

where B =
√
M2 − 1 . This pde differs from the subsonic linear pde (10)

because the coefficient of the x derivative has changed sign. Thus, (13) is
hyperbolic and therefore there are characteristics along which information
travels from the projectile outwards. The main properties of the flow are
shown in Figure 3 indicating that a shock wave forms at both the front and
rear of the projectile.

Figure 3 also shows the distribution of the pressure coefficient along the
surface of the projectile and this is dominated by the large pressure peak at
the front of the projectile just behind the shock wave. In 2D flow, and where
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Figure 3: Supersonic flow over a
projectile showing the shock wave
structure and the resulting
distribution of the pressure
coefficient.
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r = f(x) describes the surface profile, the drag coefficient scales like

Cd ∝
f ′(x)

B
∼
f ′(x)

M
. (14)

As with the subsonic case, the linear supersonic model breaks down asM→ 1 .
A nonlinear model is required to capture the transonic behaviour nearM ≈ 1 .

2.3 Transonic flow (M ≈ 1)

The transonic case is much more complicated, particularly as the behaviour
cannot be linearised. In this case the velocity potential satisfies(

K1(1−M
2) − K2

∂φ

∂x

)
∂2φ

∂x2
−
1

r

∂2

∂r

(
∂φ

∂r

)
= 0 , (15)

where K1 and K2 are constants which may depend on the Mach number,
speed of sound, and the heat capacity ratio of the air [8, 9].
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Figure 4: Flow field
and pressure coefficient
for the case where the
supersonic bubble has
just formed
(M = 1− O(ε)).
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We see from pde (15) that the behaviour may be elliptic in some regions and
hyberbolic in others, depending on the value of ∂φ/∂x. Thus, the equation
is of a mixed type. For example, when M = 1 , pde (15) is hyperbolic or
elliptic depending on the sign of ∂φ/∂x.

To examine transonic flow, pde (15) is considered in the limit whereM = 1−ε
with 0 6 ε � 1 . The resulting behaviour consists of the different regions
which are typically as shown in Figure 4 where the problem is subsonic in
some parts where the governing equation is elliptic, and supersonic in other
parts where the pde is hyperbolic. The transition from subsonic to supersonic
is relatively smooth but the reverse transition causes a shock to form. A
“bubble” of supersonic flow therefore forms on the projectile and this region
grows as the Mach number approaches unity. When the shock at the rear
of this bubble reaches the base of the projectile there is the possibility that
the resulting pressure changes may cause a reduction of the drag coefficient.
There is some very interesting behaviour as the Mach number reaches and
increases past unity. The bubble grows and extends to the full length of the
projectile as well as extending radially to infinity. There is then a complex
structure of characteristics within the bubble with part of the bubble affected
by the upstream flow and the rear part of the bubble affected by the flow
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Figure 5: Flow field and
pressure coefficient for
the case where the
supersonic bubble has
grown to infinity
(M = 1− O(δ), where
δ < ε). Decreasing from
M > 1 to M < 1 gives
quite a different picture,
where no supersonic
bubble is present. x

Cp

M < 1 M > 1

as r→∞ . Separating these two regions is a “limiting characteristic” [5].

The basic structure of the pressure coefficient for the case of when the projectile
first creates a bubble and the later behaviour when the bubble extends to
infinity are shown in Figures 4 and 5. Transonic behaviour for M > 1 is
shown in Figure 6. The main features are the very large pressure at the front
of the projectile as the flow meets the projectile and creates a shock wave.
Some of these flow figures are unstable configurations, and depend on whether
the projectile approaches transonic speeds from above or below. Thus, they
should only be used for illustrative purposes.

3 Low angle approximations to the projectile
path

For many projectiles the path is relatively straight because the angle to the
horizontal is very small and hence the path rises slightly above the surface
of the ground before falling and hitting the surface. The path is therefore
dominated by the horizontal speed of the projectile. We exploit this small



3 Low angle approximations to the projectile path M12

Figure 6: Flow field and
pressure coefficient for slightly
supersonic speeds in the
transonic regime
(M = 1+ O(ε)). A bubble of
subsonic flow persists near the
nose.
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rise in order to simplify the path and hence identify methods to extract the
drag coefficient. This also emphasises some of the difficulties that occur when
considering more general projectile paths.

For this section and the next we consider the local sound speed to be c and
nondimensionalise the problem using

u = cû , w = cŵ , t =
2m

Aρac
t̂ , x =

2m

Aρa
x̂ , z =

2m

Aρa
ẑ . (16)

Omitting the “hat” notation for simplicity,

d(u,w)

dt
= (0,−J) − Cd

√
u2 +w2(u,w),

d(x, z)

dt
= (u,w), (17)

where the Mach number is
√
u2 +w2 and Cd depends on this value only, and

there is one dimensionless parameter

J =
2mg

Aρac2
, (18)
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which represents the ratio of the gravitational force to the drag near sonic
speeds. The density of any projectile is approximately constant with ρproj ≈
3×103 kg/m3, and since the mass is approximately m = ρprojAL we find that

J ≈ ρproj

ρa

2g

c2
L , (19)

and hence this varies from projectile to projectile due only to differences in
length.

For low trajectory projectiles we know that z and w are small so we scale
them with the initial angle to the horizontal θ so that the system becomes

du

dt
= −Cd

√
u2 + θ2w2 u ,

dw

dt
= −J/θ− Cd

√
u2 + θ2w2w , (20)

d(x, z)

dt
= (u,w), (21)

with initial data u =M0 cos(θ), w =M0 sin(θ)/θ , x = 0 , z = 0 , where M0

is the initial Mach number of the projectile.

Asymptotic analysis could be done using θ→ 0 and various cases for J but
we present just one example. If J/θ� 1 then, the lowest order problem is

du

dt
= −Cd|u|u ,

dw

dt
= −J/θ ,

d(x, z)

dt
= (u,w), (22)

with u =M0 , w =M0 , x = 0 , z = 0 at t = 0 .

Noting that the local Mach number M ≈ |u| so Cd only depends on u, the
equation for u now decouples from the system, and assuming M0 > u and
u > 0 , ∫M0

u

du

u2Cd
= t . (23)

Similarly we find

z =M0t−
J

2θ
t2 , and

∫M0

u

du

uCd
= x . (24)



4 Attraction to Mach 1 M14

The simple expressions in (24) are now used to find approximations for Cd
by fitting the results to the data. For example, consider multiple trials, at
a constant M0 with different launch angles giving measured data tf and uf,
where tf is the time of flight and uf is the final speed. Labelling each of these
trials by index x, ∫M0(x)

uf(x)

du

Cd(u)u2
= tf(x). (25)

Differentiating (25) with respect to x gives

Cd(uf) = −
1

u2f

duf

dx

1

dtf/dx
. (26)

We simply make numerical approximations of the derivatives in (26) from
the data to find the value of Cd(uf). An example of the results found from
such a procedure is given in Figure 7. One important observation to make, is
that it is not possible to infer behaviour of Cd for values of the Mach number
that do not occur during the experiments that produce the data. This is
particularly problematic for the nearly horizontal shots of this regime; the
projectiles have a short time of flight and tend to remain at supersonic speeds
from firing to impact. Thus, experimental data is quite sparse for horizontal
shots spanning transonic velocities.

4 Attraction to Mach 1

Numerical studies indicate that many projectiles appear to travel at Mach 1
for a considerable distance even when their initial speed was much higher.
This provides a broad experimental window in which to study the behaviour
of transonic projectiles.

We now examine the flight of a projectile in the case of a highly simplified
drag coefficient to understand this behaviour. We neglect any variations with
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Figure 7: The drag coefficient, Cd, calculated using numerical differentiation
for a low angle projectile.
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height of the density or speed of sound and analyse the problem in the phase
plane to identify generic behaviour.

The simplest case to consider is a projectile that is shot vertically upwards,
reaches a maximum height, turns to face downwards and returns to earth. We
might expect that the projectile reaches a terminal velocity on its return if it is
shot up at sufficiently high velocity. We start by studying what that terminal
velocity might be. With just vertical motion the dimensionless equations are

dw

dt
= −J− Cd|w|w ,

dz

dt
= w , (27)

where the local Mach number is now |w| and Cd depends only on this. The
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terminal velocity occurs when the speed on the descent (w < 0) is such that

J = Cdw
2. (28)

In almost all practical cases there is a single value of w where (28) occurs
and it is instructive to examine this further. We consider a very simple form
for the drag coefficient where it is a step function shape rising sharply from
constant a to constant b across Mach 1 (|w| = 1). For such a drag coefficient
there are three different types of behaviour, determined by the values of J, a
and b:

• for J < a , the terminal velocity is w =
√
J/a (subsonic),

• for a < J < b , the terminal velocity is w = 1 (sonic),

• for J > b , the terminal velocity is w =
√
J/b (supersonic).

Hence, the terminal velocity can be subsonic or supersonic but, because of
the rapid variation in drag coefficient at the sonic point, there are a range
of projectiles whose terminal velocity is at the speed of sound (and many
projectiles, in practice, lie in this region).

To examine this more closely we consider the path of a projectile in a plane
where the equations for the velocity are

d(u,w)

dt
= (0,−J) − Cd

√
u2 +w2 (u,w), (29)

and Cd depends only on
√
u2 +w2 , that is, we ignore the variation of air

parameters with height and assume the simple a, b step function behaviour.
We now consider the phase plane (u, v) and (29) becomes

dw

du
=

−J− Cd
√
u2 +w2w

−Cd
√
u2 +w2 u

, (30)

and the equilibrium points of this system occur when u = 0 and J = −Cd|w|w
(which are exactly the cases described for the one-dimensional case). However,
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Table 1: Stable regions for different regimes.
J value Terminal velocity Stable region on w = −

√
1− u2

J < a subsonic none

a < J < b sonic 0 < u <
√
1− a2

J2

J > b supersonic
√
1− b2

J2
< u <

√
1− a2

J2

the equations also have some very interesting behaviour because there are
cases where the projectile remains at the sonic speed. To explain these cases,
we assume the projectile is at the sonic point u2+w2 = 1 and ask what values
of u ensure that we remain on this sonic curve. Putting this assumption
into (30) we find the projectile remains on the sonic curve if J

√
1− u2 = Cd .

Again we can now consider the step function shape where Cd can take any
value between and including a and b. This identifies the region of u (Table 1)
where solutions that arrive on the curve w = −

√
1− u2 remain on the curve

(we call these stable regions).

To illustrate these different behaviours a phase plane, showing the direction
field (as arrows) and several possible solution paths, is given for each of
the three cases. A collection of example trajectories are shown for subsonic
terminal velocities or J < a (Figure 8), transonic terminal velocities or
a < J < b (Figure 9) and supersonic terminal velocities or J > b (Figure 10).
For transonic terminal velocities, a wide range of initial conditions lead to
trajectories that remain on the sonic line before coming to rest at terminal
velocity. This behaviour extends to supersonic terminal velocities, where
trajectories spend a lot of time near the sonic line before diverting to the
terminal velocity.

In practice the drag coefficient does not have a jump at the sonic speed but
it does have a significant step over a small Mach number range. If we can
estimate this jump, then these phase planes allow an important observation to
be made. If the projectile has an estimated value of J that makes its terminal
velocity subsonic, then it will be very difficult to explore the behaviour of Cd
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Figure 8: Velocity (u, w) phase
plane with J < a so the terminal
velocity is subsonic. The green line
denotes the sonic curve (Mach 1).
Trajectories easily cross the Mach 1
line to reach terminal velocity (red
dot).
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near the sonic point because any path will stay near there for only a short
time. However, for other values of J there are projectile paths that spend
significant time near the sonic speed and if these paths are included in the
data, then it should be possible to extract details of what Cd does in this
region. In reality, the practical issues, such as the Mach number depending
on the height of the projectile through variations in the sound speed, make
some of these suggestions difficult to implement in practice, as discussed in
Section 5.2.
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Figure 9: Velocity (u, w) phase
plane with a < J < b so the
terminal velocity is transonic. The
green line denotes the sonic curve.
Trajectories tend to reach the
sonic curve and remain on it until
they reach the transonic terminal
velocity (red dot).
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5 Possible approximations to the drag
coefficient

From the existing large data sets of drag on projectiles and the associated
aerodynamics, we now consider what possible approximations to the drag coef-
ficient can be made that enables simple optimisation of the predicted paths to
the tabular data from measured paths to be performed easily. One of the main
issues is the number of parameters needed to describe the drag coefficient.
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Figure 10: Velocity (u, w) phase
plane with J > b so the terminal
velocity is supersonic. The green
line denotes the sonic curve.
Trajectories tend to reach the
sonic curve and remain on it for a
while before diverting to the
supersonic terminal velocity (red
dot).
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5.1 Functional forms for Cd

For the drag coefficient, researchers at the Defence Science and Technology
group often employ a family of exponential-type smoothed step functions with
seven free parameters. The optimal drag profile is then found by comparison
with firing table data. The functional form is

Cd = α+
β

M
, where (31)

α = α0 +
α1

1+ exp
[
−w−1

α (M− αµ)
] , (32)

β =
β1

1+ exp
[
−w−1

β (M− βµ)
] . (33)
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Figure 11: An example drag coefficient profile for the three-parameter family,
for a = 0.25 , b = 0.1 , and c = 10 .
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The seven free parameters are α0, α1, wα, αµ, β1, wβ and βµ. To reduce the
number of free parameters, we proposed a three-parameter family of piecewise
defined hyperbolic tangent functions. These functions are

Cd =

{
a+ b tanh

[
c(M− 1)

]
, M 6 1 ,

a+ b
M

tanh
[
c(M− 1)

]
, M > 1 .

(34)

An example drag coefficient profile using (34) is shown in Figure 11 which
clearly captures the experimental profile shown in Figure 1.

The drag coefficient profile of some projectiles cannot be represented by this
three-parameter family. For example, experiments show that some projectiles
exhibit a characteristic “dip” where Cd drops slightly before the transonic
rise. For such projectiles, the following five-parameter family of functions
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Figure 12: An example drag coefficient profile from the five-parameter family,
for a = 0.25 , b = 0.1 , c = 10 , d = 5 , and e = 50 .
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may be more appropriate:

Cd =



{
a+ b tanh

[
c(M− 1)

]}
×
{
1+ d(M− 1) exp

[
− e(M− 1)2

]}
, M 6 1 ,

a+
b tanh

[
c(1+ad

bc )(M−1)
]

M(1+ M−1
ad+bc)

, M > 1 .

(35)

Figure 12 shows an example of a five-parameter profile using (35).

5.2 Optimising with the three-parameter hyperbolic
tangent

We now proceed to use the three-parameter family to optimise the values
for a, b and c against experimental firing tables (Table 2). The firing tables
are considered a guide for marksmen who need to determine the angle of fire
given the distance to target (and a consistent muzzle velocity). This is why
the range appears to be the independent variable spread 100m apart. Our
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Table 2: Experimental firing table data from left to right: distance to ground
impact, angle of fire (independent variable), angle of impact, peak height,
horizontal distance of peak height, flight time, final velocity.

R Angle Fall topH topR Time Vf
100 0.0833 0.0667 0.03 51 0.15 623

300 0.2333 0.3000 0.34 162 0.52 459

500 0.4833 0.8000 1.3 282 1.04 334

600 0.6667 1.1500 2.3 344 1.35 304

800 1.1000 2.1000 5.5 468 2.05 266

calculations take the form of initial value problems where the firing angle and
muzzle velocity are independent variables, while the range is used as a target
metric. The optimisation proceeds as follows:

1. For a given firing angle, calculate a trajectory for an initial a, b and c.

2. Compare trajectory values (e.g., velocity of impact, peak height) with
experimental data

3. modify a, b and c to improve the result.

4. repeat.

We used this optimisation procedure for each angle on the available firing
table data (including Table 2). The resulting parameters for each angle are
shown in Table 3, with the corresponding drag profiles shown in Figure 13.
The r values are the ratio between the tabulated data and the simulated flight
using optimised parameters, with r = 1 being a perfect fit.

There are a few issues with the data in Table 2. For any given projectile, we
would expect that the calculated drag coefficient profile is consistent for any
given firing angle, which is not the case. To remedy this, the optimisation
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Figure 13: Drag coefficient profiles optimised for each of the eight firing table
angles in Table 3.
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Table 3: Parameter and r values for each angle

θ r(R) r(θ) r(Vf) r(ToF) r(TopH) r(TopR) a b c

0.08 1.38 1 1.00 1.38 1.73 1.38 0.19 0.18 2.9

0.15 1.119 1 1.00 1.13 1.23 1.11 0.24 0.22 3

0.23 1.03 1 1.00 1.04 1.07 1.02 0.27 0.23 3.1

0.33 0.991 1 0.99 0.99 0.98 0.98 0.26 0.26 11

0.48 0.960 1 1.00 0.98 1.01 0.96 0.35 0.21 3

0.66 0.984 1 1.00 0.99 1.00 0.98 0.33 0.20 2.9

0.96 0.991 1 1.00 1.04 1.12 0.98 0.35 0.23 9.5

1.1 1.00 1 1.00 0.99 0.98 0.98 0.31 0.21 2.7
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Figure 14: Unusual experimental radar drag profiles.
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procedure should be tweaked to globally optimise against the data from all
firing angles. This is complicated as each firing angle spans a different range
of Mach numbers. Some sort of special weighting algorithm may be needed.
Another issue highlighted is that only a few firing angles yield Mach numbers
in the transonic regime which is what we are particularly interested in. Most
firing angles are near-horizontal, so the projectile impacts before losing too
much speed. The lack of data in this interesting regime was the inspiration
behind the discussion in Section 4.

5.3 Point-by-point optimisation

Another avenue for obtaining the drag profile is from point-by-point optimi-
sation. Here, the profile is not parametrised, but is discretised into n points
which are free to move by the optimisation procedure. The advantage is that
here we:

• obtain the drag coefficient for exceptional projectiles that are not suitable
parametrised by the above families; and

• identify the small details of the drag coefficient profiles.

For example, Figure 14 shows unusual experimental drag coefficient profiles.

The main disadvantage is that the procedure takes more time than the
parametrised functions as there are n free parameters where n ≈ 40 for
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Figure 15: Left: A noisy drag coefficient given by a piecewise linear function
(dashed red) and a smooth but noisy function (solid black). Right: The
equivalent profile where the high frequency noise is smoothed by Bézier curves.
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accuracy which is far greater than the three- or five-parameter families.
Another disadvantage is that we lose any smooth behaviour and this makes it
difficult to gain physical insight into what may be causing the changes in drag.

5.3.1 Bézier curves

The drag coefficient profiles obtained by point-by-point optimisation are
often very noisy and rough. It is possible to smooth out these profiles by
approximating the optimal results by Bézier curves, which are based on
Bernstein polynomials, and are commonly used in computer graphics. A
comparison between an example noisy drag profile and the smoothed version
is shown in Figure 15. Ideally, this smoothed profile would then be used to
recalculate the projectile trajectory to check that the target metrics are not
too different from those of the optimum profile.
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6 Conclusion

We began our investigation by trying to gain a greater understanding of
the fluid dynamics involved to help our physical intuition. The behaviour
of a fast-moving projectile in air is complicated, particularly in the sonic
regime, so it is often necessary to appeal to techniques like optimisation
as a route to solving the inverse problem for the drag coefficient. To this
end, in Section 5, we suggested alternative parametrisations and smoothing
techniques for the drag coefficient profiles to improve the efficiency and utility
of the optimisation procedure.

A major barrier is the lack of data, particularly for the sonic regime in
which we are most interested. Using idealised smoothed step functions as
a representative drag profile, we demonstrated in Section 4 that projectiles
with a terminal velocity near or above sonic speeds will spend a large amount
of time travelling near Mach 1. This provides an ideal experimental window
in which to gather experimental data for the transonic region. Making use of
terminal velocities and vertical firing experiments is particularly appealing
because of this attraction to Mach 1. For the usual wind tunnel experiments
where the speed is the control variable, we find that good dense data at
Mach 1 is difficult to obtain as a small change in velocity lead to a large
change in the drag coefficient due to the sharp transonic rise.

It may very well be beyond the scope of our industry partner to obtain the
data from vertical firing experiments. More data would be beneficial to both
the physical understanding of projectile flight, and the optimisation procedure
used to obtain the drag coefficient profile.
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