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A numerical solution for moving boundary
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Abstract

A numerical method has been applied to the nonlinear shallow wa-
ter wave equations for unforced linear frictional flow above parabolic
bottom topography and is found to be accurate. This solution in-
volves moving shorelines. The motion decays over time. The numeri-
cal scheme used is adapted from the Selective Lumped Mass numeri-
cal scheme. The wetting and drying algorithm used in the numerical
scheme is different to that in the Selective Lumped Mass scheme. The
numerical scheme is finite element in space, using fixed triangular ele-
ments, finite difference in time and is explicit. The numerical solution
compares well with an analytical solution.
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1 Introduction

We consider the case where the motion of shallow water in a basin is governed
by the equations [12]
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where ζ(x,y, t) is the height of the water surface above mean water level,
z = −h(x,y) is the bottom surface, U(x,y, t) is the depth averaged velocity
component of the water current to the East, V(x,y, t) is the depth averaged
velocity component of the water current to the North, g is the acceleration
due to gravity, τ is the bottom friction parameter and t is the time. The
bottom friction parameter, τ, is considered to be constant, which implies that
the bottom friction force varies linearly with velocity. In tidal modelling
the bottom friction parameter is usually taken to be proportional to the
magnitude of the velocity but occasionally it is accurate to consider it a
constant [6]. Equations (1) and (2) are equations of the form, force equals
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mass times acceleration, where the force terms are friction and hydrostatic
pressure, while (3) is a statement of mass conservation.

Assume that the flow is unforced and takes place above parabolic topography,
defined by depth

h = h0

(
1−

x2

a2

)
, (4)

with h0 and a constant.

A numerical solution is found. Initial values of the velocity components,
U and V , and initial height of the water surface, ζ, are assumed. These
initial values are the same as in the analytical solution by Sampson, Easton
and Singh [8], briefly discussed in Section 3.

2 Numerical solution

The numerical method used was introduced by Sampson et al. [9] and its
results compared against an analytical solution; the numerical method was
tested against another analytical solution by Sampson et al. [10]. The article
leads on from the previous work to compare the results of the method against
a new analytical solution involving linear friction and a dry/wet interface.
This article differs from previous work in that the numerical method is ver-
ified for a problem involving moving boundary unforced flow, whereas the
other articles involved moving boundary forced flow; in addition, this article,
unlike previous articles, provides a table of errors for different discretisation
sizes, compares the numerical and analytical values of the U-velocity at a
given time and the water level, ζ, over time for a given node and compares
solutions at a number of y values.

The only other discussions of the numerical solutions of the nonlinear shallow
water equations involving moving boundary frictional flow above parabolic
bottom topography are by Balzano [1], Holdahl, Holden and Lie [3], Lewis
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and Adams [5], Peterson et al. [7] and Yoon and Cho [13], who compared
numerical solutions of the nonlinear shallow water wave equations with some
of the analytical solutions by Thacker [11] for moving boundary frictionless
flow above parabolic bottom topography.

The numerical scheme used is adapted from the slm (Selective Lumped Mass)
numerical scheme of Kawahara, Hirano and Tsubota [4]. The slm method
applies the Galerkin weighted residual finite element method to the shallow
water equations, with fixed triangular elements, resulting in a nonlinear sys-
tem of first order differential equations. A modified Euler’s method, which
is second order accurate, is further modified using selectively lumped mass
matrices and applied to these equations, resulting in finite difference equa-
tions that are explicit. The finite element method has the advantage over
the finite difference method that it can represent non-rectangular domains
of flow more accurately. As the shoreline moves over time, in the numerical
solution there are some nodes that are wet part of the time and dry part of
the time. The wetting and drying algorithm used in the numerical scheme,
discussed in detail by Sampson et al. [9], is different to that in the slm model.
In the numerical scheme, a decision on whether a node is dry or wet is made
at the end of each time step ∆t. Some nodes are initially made wet while
others are initially made dry. Some nodes change from dry to wet or wet to
dry at the end of a time step, while some nodes remain wet or remain dry.
There are wet and dry elements, with an element being wet if all the nodes
are wet and dry if at least one node is dry. At any time step or half time step
the slm calculations are made only for elements that were wet at the end of
the last time step. At the end of each time step each element that contains
only one dry node is tested to determine whether conditions are favourable
for wetting that node.

The numerical solution is compared with an analytical solution, developed
by Sampson et al. [8], with errors small and reducing with reduced element
size.
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3 The analytical solution used for

comparison

Sampson et al. [8] obtained analytical solutions of the shallow water equa-
tions (1), (2) and (3) above the parabolic topography (4), by assuming that

U = u0(t) and V = 0 . (5)

A solution obtained is
u0(t) = Be−τt/2 sin st , (6)

where B is a constant and where
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Equation (8) implies that at any time t the water surface is a plane. The
projection of the moving shorelines on the xy-plane is two parallel straight
lines

x =
a2e−τt/2

2h0g

(
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2
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)
± a. (9)

4 The analytical solution versus the

numerical solution

The numerical solution has been tested against the analytical solution with
good agreement between the numerical and analytical solutions.
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For the numerical model the values chosen were h0 = 10m, a = 3000m,
τ = 0.001 s−1 and B = 2m s−1 with the initial values of ζ, U and V set to
those of the analytical model. The period of the trigonometric terms in the
motion, T , is 1353.49 s. The initial velocity is 0m s−1. The calculation, using
a program written in Visual C++, was done over eight periods (10827.90 s).

Three different triangular meshes were used, each one covering a rectangular
region of width 8640m in the x direction, but with different breadths in the
y direction. The breadth of the region used in the first and coarsest mesh,
Mesh 1, is 2160 metres. The breadth of the second mesh, Mesh 2, which is
finer than Mesh 1, is 720 metres. The breadth of the finest mesh, Mesh 3, is
240 metres. Each triangle in each mesh is an isosceles right angled triangle.
Mesh 1 has 1105 nodes and 2048 elements, Mesh 2 has 3281 nodes and
6144 elements and Mesh 3 contains 9809 nodes and 18432 elements. There
is no condition on the solution on any of the boundaries. The slm scheme
involves a selective lumping parameter, sr. The scheme is restricted by the
Courant–Friedrichs–Lewy stability requirement

∆t 6 dm∆x/
√
gh, (10)

where ∆x is the smallest space step, ∆t is the maximum time step and dm is
a function of sr, obtained from a table by Goraya [2]. For Mesh 1 ∆t = 8.46 s,
for Mesh 2 ∆t = 1.57 s and for Mesh 3 ∆t = 0.392 s; these values are close
to the maximum values according to the stability requirement. For each
mesh the values of ζ and U at seven different x values at four different times
were calculated for nodes on the base of each mesh, top of each mesh and
on a line parallel to the base and midway between the base and the top of
each region; for any given x value for a given mesh the value of ζ was the
same to 0.01m for each of the y values chosen, similarly for U to 0.01m s−1.
Table 1 shows the analytical value for water height, ζ, and the difference
between the analytical value and numerical value at seven x values along the
base of each rectangle at time T/2 = 6746.747 s for the three meshes: the
finer the mesh the smaller the error; the errors are quite small by Mesh 3.

The values of water elevation, ζ, velocity U and the x-coordinate of the left
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Table 1: Errors, ∆ζ, at time t = T/2 = 676.747 s.
x Analytical Errors (m)

(m) Values (m) Mesh 1 Mesh 2 Mesh 3
−2565 −1.833 −0.051 −0.013 −0.002
−2025 −1.469 0.022 0.009 0.003
−1080 −0.831 −0.035 −0.009 −0.008

0 −0.102 −0.062 −0.013 −0.007
1080 0.626 0.030 −0.005 0.000
2025 1.264 −0.055 −0.001 0.003
2565 1.628 −0.009 0.007 0.004

hand shoreline discussed below are for nodes sitting on a line parallel to the
base of the Mesh 3 rectangular region and half way between the base and
top of the region.

Figure 1 plots the numerical and analytical x-coordinates of the left hand
shoreline as a function of time over two periods. The analytical solution is
shown in the diagram as a continuous curve while the numerical solution is
a number of points; these points are so close together that they appear to be
a number of straight lines parallel to the time axis. As the distance between
successive nodes is 15m, the distance between successive apparent straight
lines is 15m, which means that numerically when the shoreline moves it
moves 15m in one time step. There is good agreement between the analytical
and numerical values.

Figure 2 compares the numerical and analytical values for the water level, ζ,
against x at time t = T . The values are close.

Figure 3 compares the numerical and analytical values forU-velocity, against x
at time t = T/4 . The values are moderately close for most points except for
close to the shoreline.

Figure 4 compares the numerical and analytical values of the water surface, ζ,
over 3.5 periods at x = −2685m. The values are close.
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Figure 1: A plot of the numerical and analytical values of the x-coordinate
of the left hand shoreline as a function of time over two periods. The analyt-
ical solution is a continuous curve while the numerical solution is a number
of points.
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Figure 2: A comparison of the numerical and analytical values of the water
surface at time t = T . The analytical solution is a continuous line whereas
the numerical solution is a series of dots; the results for every eighth node
are shown.
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Figure 3: A comparison of the numerical and analytical values of the U-
velocity at time t = T/4 . The analytical solution is a continuous line whereas
the numerical solution is a dashed line.
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Figure 4: A comparison of the numerical and analytical values of the
water surface over 3.5 periods at x = −2685m. The analytical solution is a
continuous line whereas the numerical solution is a series of dots; the results
for every 128 data points are shown.
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5 Conclusions

A numerical solution of the nonlinear shallow water wave equations for un-
forced linear flow above parabolic bottom topography has been found. This
solution involves moving shorelines. The motion decays over time. The nu-
merical scheme used is adapted from the slm numerical scheme. The wetting
and drying algorithm used in the numerical scheme is different to that in the
slm scheme. The numerical scheme is finite element in space, using fixed
triangular elements, finite difference in time and is explicit. The numerical
solution has been compared with an analytical solution with good agreement
between the two solutions. The numerical scheme has been found to be ac-
curate and hence would be useful for modelling actual shallow water flow
involving moving shorelines, including flow in lakes, storm surges and flow in
tidal flats.
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