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Soliton solutions for Korteweg-de Vries
equation by homotopy analysis method
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Abstract

This article solves the well-known Korteweg-de Vries equation by
the homotopy analysis method, an analytical, totally explicit tech-
nique. By choosing a proper auxiliary parameter, the new series so-
lution converges rapidly to the exact solution, with a simple way to
adjust the convergence region. In addition, we show that a significant
improvement of the convergence rate and region is achieved by apply-
ing homotopy-padé approximants. The present method holds promise
in providing soliton solutions for more complicated wave equations.
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1 Introduction

Most physical problem in the real world are nonlinear and in turn are de-
scribed by nonlinear equations. However, it is generally difficult to solve
nonlinear differential equations accurately by analytical means. Therefore,
seeking suitable solving methods is an active task in branches of computa-
tional physics. Recently, a new analytic approach named homotopy analysis
method (ham) has seen rapid development. It has been successfully ap-
plied to many nonlinear problems and logically contains Lyapunov’s small
parameter method, the δ-expansion method, and Adomian’s decomposition
method [4]. Without depending on a small parameter such as in a perturba-
tion approach, the ham has a particular advantage in solving strong nonlinear
problems. Other advantages associated with the ham over the perturbation
technique include greater flexibility in the selection of a proper set of base
functions for the solution and a much simpler way in the control of the con-
vergence rate and region. The ham was first applied to fluid mechanics by
Liao [3, 4]. Liao and Cheung [5] successfully applied ham in fully analytical
way to nonlinear waves propagating in deep water and the ham solution in
finite water depth was later obtained by Tao et al. [7]. Abbasbandy [1], Wu
and Liao [8], and Rashidi et al. [9] also obtained ham solutions for some
shallow water wave equations.
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Among many nonlinear equations in physics, The Korteweg-de Vries
(kdv) equation is a typical, relatively simple and classical one. It is a well-
known mathematical model of nonlinear waves on shallow water surfaces.
The so-called “soliton” originated from solving the kdv equation. Many
researchers still endeavour to solve kdv-type equations [2, 6, e.g.]. In this
article, the ham is applied to obtain soliton solutions for the kdv equation.
An explicit solution is presented and compared with the exact solution. Very
good agreement is achieved, demonstrating the high efficiency of ham.

2 Theoretical consideration

2.1 The basic idea behind HAM

Consider a nonlinear equation

N [f(x, t)] = 0 , (1)

where N is a nonlinear operator, f(x, t) is the function to be found, and
x and t are spatial and temporal independent variables respectively.

ham is based on a continuous variation from an initial trial to the exact
solution. By constructing the homotopic mapping f(x, t) → F(x, t;q), we
have the following homotopy:

(1− q)L[F(x, t;q) − f0(x, t)] = qh̄H(x, t)N [F(x, t;q)], q ∈ [0, 1] , (2)

where F(x, t;q) is differentiable with respect to the embedding parameter q,
f0(x, t) is an initial estimate of f(x, t), h̄ is a nonzero auxiliary parameter,
H(x, t) is a nonzero auxiliary function, and L is a linear auxiliary operator
with the property of L[0] = 0 .

When q = 0 and q = 1 , it holds

F(x, t; 0) = f0(x, t) , N [F(x, t; 1)] = 0 , (3)
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respectively. Therefore, as the embedding parameter q varies from 0 to 1,
F(x, t;q) maps continuously from the initial estimate f0(x, t) to the desired
solution f(x, t).

By Taylor’s theorem, F(x, t;q) is expanded with respect to the embedding
parameter q as

F(x, t;q) = f0(x, t) +

∞∑
m=1

fm(x, t)qm , (4)

where

fm(x, t) =
1

m!

∂mF(x, t;q)

∂qm

∣∣∣∣
q=0

. (5)

Differentiating the zeroth order deformation equation (2) m times with re-
spect to q at q = 0 and then dividing it by m!, we have the following
mth order deformation equation

L[fm(x, t) − χmfm−1(x, t)] = h̄Rm(x, t) , (6)

where

χm =

{
0, m ≤ 1 ,
1, m > 1 ,

(7)

Rm(x, t) =
1

(m− 1)!

∂m−1N [F(x, t;q)]

∂qm−1

∣∣∣∣
q=0

. (8)

If the series (4) converges at q = 1 , then the desired solution

f(x, t) = f0(x, t) +

∞∑
m=1

fm(x, t) . (9)

Given a nonlinear problem, we choose a set of base functions to present
its solutions, which provides us with the rule of solution expression [4]. The
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auxiliary parameter h̄ provides a convenient way to control and adjust the
rate and region of the convergence [4]. The dependence of ham solution
on h̄ and detailed discussions are presented in Section 3. The auxiliary
function H(x, t) in the zeroth order deformation equation (2) is determined
by the so called rule of coefficient ergodicity [4], that is, each base should
appear in the solution expression at least once. However, in most cases
including in this article, H(x, t) is chosen as 1 and vanishes from equation (2).

2.2 Soliton solution of KdV equation by HAM

The kdv equation is the nonlinear, dispersive partial differential equation

ut + uxxx + 6uux = 0 , (10)

where x is space, t is time and subscripts designate partial derivation with
respect to the variable.

For travelling wave solutions, defining θ = x − ct and u(θ) = av(θ),
equation (10) is

v ′′′(θ) + 6av(θ)v ′(θ) − cv ′(θ) = 0 , (11)

where c is the wave speed, a is the wave amplitude, and a prime designates
the derivative with respect to θ.

For a one-loop soliton solution, it is natural to locate the origin at the po-
sition where the nondimensional wave elevation v(θ) achieves its maximum.
We then have the boundary conditions at the origin and infinity as

v(0) = 1, v ′(0) = 0, v(+∞) = 0 . (12)

As the soliton wave evanesces at infinity, we assume

v(θ) ∼ B exp(−λθ) as θ→ +∞ , (13)
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where λ > 0 and B are constants. Substituting equation (13) into equa-
tion (11) and balancing the main terms, we have

λ =
√
c . (14)

Define τ = λθ , equation (11) becomes

cv ′′′(τ) + 6av(τ)v ′(τ) − cv ′(τ) = 0 , (15)

with the boundary conditions (12).

Then the solution is expressed in terms of the base functions

{exp(−nτ) | n = 1, 2, 3, . . .} , (16)

in the form

v(τ) =

+∞∑
n=1

bn exp(−nτ) , (17)

where bn is a coefficient to be determined. The nonlinear operator N is
chosen as

N [Φ(τ;q), A(q)] = c
∂3Φ(τ;q)

∂τ3
+6A(q)Φ(τ;q)

∂Φ(τ;q)

∂τ
−c
∂Φ(τ;q)

∂τ
, (18)

whereΦ(τ;q) and A(q) are the mapping functions of v(τ) and a respectively.
The linear operator L is chosen as

L [Φ(τ;q)] =

(
∂3

∂τ3
−
∂

∂τ

)
Φ(τ;q) , (19)

which has the property

L [C1 exp(−τ) + C2 exp(τ) + C3] = 0 , (20)

where C1, C2 and C3 are constants.
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According to the boundary conditions (12) and the rule of solution ex-
pression (17), the initial guess is chosen as

φ0(τ) = 2 exp(−τ) − exp(−2τ) . (21)

The zeroth order deformation equation is

(1− q)L[Φ(τ;q) − φ0(τ;q)] = qh̄N [Φ(τ;q), A(q)] , (22)

subject to the boundary conditions

Φ(0;q) = 1, Φτ(0;q) = 0, Φ(+∞;q) = 0 . (23)

Expand Φ(0, q) and A(q) in Taylor series with respect to q, we have

Φ(τ;q) = φ0(τ) +

∞∑
m=1

φm(τ)qm , (24)

A(q) = a0 +

∞∑
m=1

amq
m , (25)

where

φm(τ) =
1

m!

∂mΦ(τ;q)

∂qm

∣∣∣∣
q=0

, (26)

am =
1

m!

∂mA(q)

∂qm

∣∣∣∣
q=0

. (27)

For brevity, we define

~φm = {φ0, φ1, φ2, . . . , φm} and ~am = {a0, a1, a2, . . . , am} . (28)

Differentiating equations (22) and (23) m times with respect to q at q = 0 ,
and then dividing them by m!, the mth order deformation equation is

L[φm(τ) − χmφm−1(τ)] = h̄Rm(~φm, ~am) , (29)



3 Result and discussion C159

subject to the boundary conditions

φm(0) = φm(+∞) = φ ′
m(0) = 0 , (30)

where

Rm(~φm−1, ~am−1) = cφ ′′′
m−1 + 6

m−1∑
i=0

i∑
j=0

ajφi−jφ
′
m−i−1 − cφ ′

m−1 . (31)

The solution of equation (29) is

φm(τ) = C1 exp(−τ) + C2 exp(τ) + C3 + φ̂m(τ) , (32)

where φ̂m(τ) is a particular solution of equation (29) with unknown term am−1.
According to the boundary condition (30) and rule of solution expression (17),

C2 = C3 = 0, C1 = −φ̂m(0) and φ̂m(0) + φ̂ ′
m(0) = 0 , (33)

which determine am−1.

3 Result and discussion

The convergence region and rate are controlled by the auxiliary parameter h̄
in ham. For different value of h̄, a converges to the same value—the approx-
imation of the exact solution. As shown in Figure 1, the nearly horizontal
line segments of a-h̄ curves correspond to the convergence regions of the
h̄ values. Figure 1 clearly shows that the first 2mth order approximations
of the a/c converge in a region around h̄ ∈ [−2,−1/2]. The convergence
region enlarges as more high order terms are included in the series. Based
on the above arguments, the auxiliary parameter is chosen as h̄ = −1 for all
the ham solutions presented in this section.
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Figure 1: The first 2mth order approximations of a/c versus h̄.
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Since the kdv equation is integrable, the exact soliton solution of (10) is

u(x, t) =
c

2 cosh2
[√

c
2

(x− ct− d)
] , (34)

where d is an arbitrary constant, chosen as 0 in the present coordinates.

The zeroth, first and second order approximations of v(τ) and a are (recall
u(θ) = av(θ), τ =

√
cθ and θ = x− ct)

ṽ0(τ) =2e−τ − e−2τ , (35)

ṽ1(τ) =
43

16
e−τ −

5

2
e−2τ +

15

16
e−3τ −

1

8
e−4τ , (36)

ṽ2(τ) =
12905

4096
e−τ −

14065

3584
e−2τ +

73275

28672
e−3τ

−
13677

14336
e−4τ +

95

512
e−5τ −

3

224
e−6τ , (37)

ã0 =
5

8
c , (38)

ã1 =
7905

14336
c , (39)

ã2 =
20207405

38535168
c , (40)

where the tilde designates the approximation solution and the number in the
subscript denotes the order number.

Choosing the first three terms of series (24) and (25) respectively and
using the built-in function PadeApproximant in Mathematica 6, the [1, 1]

homotopy-padé (hp) approximation of v(τ) and a are

ṽ[1,1](τ) =
4054+ 64e−2τ − 504e−τ − 17069eτ + 26418e2τ

384− 4552eτ + 10698e2τ + 6433e3τ
, (41)

ã[1,1] =
2921395

5742736
c . (42)
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Table 1: The 2mth order solution and [m,m] homotopy-padé approxima-
tion of a/c for h̄ = −1 .

Order a/c Error [m,m] a/c Error
2 0.524389 4.8778% [1,1] 0.508711 1.7422%
4 0.506689 1.3378% [2,2] 0.500734 0.1468%
6 0.502126 0.4252% [3,3] 0.500055 0.0110%
8 0.500737 0.1474% [4,4] 0.500005 0.0010%
10 0.500271 0.0542% [5,5] 0.500000 0.0000%

Exact 1/2

The comparison of the ham solution and the exact solution is shown in
Table 1, where the first 2mth order solution and [m,m] homotopy-padé
approximation of a/c for h̄ = −1 are shown. A rapid convergence rate
of the series is evident. Table 1 also shows that the present homotopy-
padé giving high accurate results with only a few number of terms (the
relative error is 1.74% for [1, 1] hp approximation and 0.15% for [2, 2] hp
approximation). This is a further demonstration of the excellent convergence
rate in the present homotopy-padé technique.

The first 2mth order solution and [m,m] homotopy-padé approximation
of u versus θ for h̄ = −1 and c = 1 is shown in Figure 2. The present ham
solution is almost identical with the exact solution especially for homotopy-
padé solutions as shown in Figure 2. Even the [1, 1] hp approximation yields
very good agreement. It is also evident that the higher order approximations
result in better accuracy.

4 Conclusion

In this article, explicit solutions of the well-known kdv equation were de-
rived using the homotopy analysis method. Different from perturbation
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Figure 2: The first 2mth order solution and [m,m] homotopy-padé approx-
imation of u versus θ for h̄ = −1 and c = 1 .
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techniques, the present ham approach is not dependent on any small or large
parameter, and is particularly suitable for solving nonlinear problems. The
convergence region is controlled by the non-zero parameter h̄, providing us
a simple way to adjust convergence. Furthermore, a significant improvement
of the convergence rate and region is achieved by applying homotopy-padé
technique. The present method holds promise in providing soliton solutions
for more complicated wave equations.
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