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Longitudinal dispersion in a horizontal
subsurface flow constructed wetland: a

numerical solution
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Abstract

We present a numerical solution for the dead zone model which
describes the solute transport in a subsurface and horizontal flow con-
structed wetland. This model is a system of two mass balance equa-
tions for two conceptual areas: the main channel and the storage zone.
We use finite difference schemes to determine the numerical solution
of the system and we study its convergence by presenting proper-
ties related to the stability and accuracy of the schemes. Concerning
the experimental results, the magnitude of the longitudinal dispersion
and the extension of dead volumes is estimated for clean conditions
and after a certain operating period under organic loading conditions.
The results showed a considerable amount of longitudinal dispersion
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through the bed, which was very strong near the feeding point, indi-
cating the occurrence of mixing and significant presence of dead zones
and short-circuiting. This approach is expected to be useful to deter-
mine operating conditions, such as, the control of the incoming organic
loading, and also to avoid the increase of dead zones as a means to
improve treatment performance.
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1 Introduction

Constructed wetlands are considered a technical, economical and environ-
mental sustainable solution for wastewater treatment in small communities
since they are efficient with pollutant removal and have high filter capac-
ity [4, 5]. The most used solution presented a subsurface and horizontal flow
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bed (sshf) and it is recognized to have a good ecological integration. How-
ever, with packing media used as a bed it may become frequently clogged due
to factors whose interrelations are not well known. The transport of solutes
in the bed is, therefore, difficult to study since there are many factors which
affect the transport mechanisms, such as the development of roots, media
characteristics (for example, type of material, porosity and physical proper-
ties such as sorption), excessive biofilm growth, hydraulic and organic load-
ings, chemical and biochemical transformations and accumulation of solids.

A complex interaction of these processes in the porous media may stim-
ulate the development of immobile areas, dead volumes, hydraulic short-
circuiting, internals recirculation and changes in dispersion conditions. These
affect the solute distribution through media and, therefore, the treatment ef-
ficiency may be adversely affected. The analysis of flow patterns for different
bed characteristics (for example, with and without vegetation) and organic
loadings is essential for a better understanding of the transport of solutes in
such systems and, therefore, to allow accurate prediction of treatment. A
reliable mean of evaluating the extension of those mechanisms is to carry out
tracer tests through the bed and analyse the exit concentration curves with
time (breakthrough curve) through numerical solutions of transport equa-
tions. The hydrodynamic characteristics of the bed, in terms of flow regime,
extension of dead areas and longitudinal dispersion may be analysed by esti-
mating parameters such as the Peclet number (Pe) or the ratio of dead zones
volumes (ε). Therefore, the objective of this paper is to propose a numerical
solution for the dead zone model to simulate the solute transport in a sshf
constructed wetland.

The dead zone model is a system of two mass balance equations for two
conceptual areas: the main channel and the storage zone. The main channel
is defined as that portion of the stream in which advection and dispersion
are the dominant transport mechanisms. The storage zone is defined as the
portion of the stream that contributes to transient storage. Within the main
channel, solutes are transported downstream by advection and dispersion.
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Advection and dispersion are not included in the storage zones, where down-
stream transport is negligible.

2 Model problem

For a conservative solute the equations governing longitudinal transport and
mixing in a stream are [2, 6, 7, e.g.]

∂C

∂t
+ u

∂C

∂x
= D

∂2C

∂x2
+ εT−1(Cs − C) , (1)

∂Cs

∂t
= T−1(C− Cs) , (2)

with C and Cs as solute concentration (mg/l) in main stream and storage
zones, u the mean effective flow velocity (m/h), where h denotes hour, D the
dispersion coefficient (m2/h), ε the dimensionless ratio of dead zone volume
and main volume per unit length and T is an exchange parameter (h) related
to mean dead zone residence time. The later two parameters are

ε =
As

A
and T−1 = α

A

As
,

with A denoting the flow cross-section (m2), As the storage zone cross-
sectional area (m2) and α the storage zone exchange coefficient (h−1).

For our particular problem the initial conditions are

C(x, 0) = 0 and Cs(x, 0) = 0 for x > 0 . (3)

Although in most of the experimental procedures there are some uncertainty
about what happens at the upstream boundary, that is, near the tracer in-
jection point, we evaluate it as a function

C(0, t) = g(t), t > 0 . (4)
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The boundary condition, g(t), represents the solute concentration at the
inflow boundary and is the following exponential decay

g(t) = C0e
−Qt/Vinj , (5)

where Vinj denotes the volume of injected tracer, C0 is the concentrated
solution injected at the beginning and Q denotes the flow rate (m3/h). This
condition is obtained considering that the inflow concentration is governed by
the differential equation, which describes the inflow decay by a rate ofQ/Vinj,

dg

dt
= −

Q

Vinj

g , with g(0) = C0 .

3 Finite differences discretization

To derive a finite difference scheme we suppose there are approximations
Cn := {Cni } to the values C(xi, tn) and Cns := {Cns,i} to the values Cs(xi, tn)
at the mesh points xi = i∆x , i = 0, 1, 2, . . . , N and tn = n∆t , n =

0, 1, 2, . . . ,M . Let us also consider the central and second difference op-
erators, ∆0C

n
i := 1

2
(Cni+1 − Cni−1) and δ2Cni := Cni+1 − 2Cni + Cni−1.

Using second order centered finite differences operators in space and the
trapezoidal rule in time (Crank–Nicolson scheme), we obtain

Cn+1
i − Cni
∆t

=
1

2

(
−
u

∆x
∆0C

n+1
i +

D

∆x2
δ2Cn+1

i + εT−1(Cn+1
s,i − Cn+1

i )

)
+
1

2

(
−
u

∆x
∆0C

n
i +

D

∆x2
δ2Cni + εT−1(Cns,i − C

n
i )

)
, (6)

Cn+1
s,i − Cns,i
∆t

=
1

2
T−1(Cn+1

i − Cn+1
s,i ) +

1

2
T−1(Cni − Cns,i) . (7)

In order to avoid implicitness we use the decoupling procedure of the two
equations suggested by Runkel and Chapra [7]. First we rearrange the terms
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in (7) in the form

Cn+1
s,i = (1− 2γ)Cns,i + γ(Cni + Cn+1

i ) , (8)

where γ = ∆t/(2T + ∆t). Secondly, replacing (8) in (6), we obtain

Cn+1
i = Cni +

1

2

(
−ν∆0 + µδ2 − ∆tεT−1(1− γ)

)
Cn+1
i

+
1

2

(
−ν∆0 + µδ2 − ∆tεT−1(1− γ)

)
Cni + ∆tεT−1(1− γ)Cns,i ,(9)

for ν = V∆t/∆x (Courant number) and µ = D∆t/∆x2 (Fourier number).
Since ∆tεT−1(1− γ) = 2εγ , we write the system (8)–(9) in the form

ACn+1
i = BCni + 2εγCns,i , (10)

Cn+1
s,i = (1− 2γ)Cns,i + γ(Cni + Cn+1

i ) , (11)

where A and B are the difference operators A = 1− 1
2

(
−ν∆0 + µδ2 − 2εγ

)
,

and B = 1+ 1
2

(
−ν
2
∆0 + µδ2 − 2εγ

)
.

4 Convergence of the finite differences

In order to study the convergence of the finite differences schemes (6)–(7),
we consider the approach by Verwer and Sanz–Serna [8]. In this approach
to prove the convergence we need to establish the consistency of the finite
difference schemes as well as to prove the stability of the spatial and full
discretizations.

4.1 Consistency

Let v = v(x, t) and vs = vs(x, t) be the solutions to our system of equa-
tions. We denote by τni and τns,i the truncation errors associated with the
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equations (1) and (2) respectively. We have

τni =
vn+1
i − vni
∆t

−
1

2

(
−
u

∆x
∆0v

n+1
i +

D

∆x2
δ2vn+1

i

)
−
1

2

(
−
u

∆x
∆0v

n
i +

D

∆x2
δ2vni

)
−
1

2
εT−1(vn+1

s,i + vns,i) −
1

2
εT−1(vn+1

i + vni ) ,

τns,i =
vn+1
s,i − vns,i
∆t

−
1

2
T−1(vn+1

s,i + vns,i) −
1

2
T−1(vn+1

i + vni ) .

Therefore

τni =

(
∂v

∂t

)n+1/2

i

+O(∆t2) + u

(
∂v

∂x

)n+1/2

i

−D

(
∂2v

∂x2

)n+1/2

i

+O(∆x2)

+O(∆t2) − εT−1(vs − v)
n+1/2
i +O(∆x2) ,

τns,i =

(
∂v

∂t

)n+1/2

i

+O(∆t2) − T−1(v− vs)
n+1/2
i +O(∆t2) .

The scheme’s consistency is of order O(∆t2) +O(∆x2).

4.2 Stability

We consider the problem (1)–(2) written in the form

∂C

∂t
+ U

∂C

∂x
= D

∂2C

∂x2
+ EC , (12)

where C represents the exact solution C(x, t) = (C(x, t), Cs(x, t)) and

U =

[
u 0

0 0

]
, D =

[
D 0

0 0

]
and E = T−1

[
−ε ε

1 −1

]
. (13)

The stability of the spatial discretization is based on the existence of a
bounded logarithmic matrix norm [3]. The stability of the full discretization
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is proved using the concept of C-stability, which is linked with stability in
the Lax–Richtmyer sense [3].

Let us first consider the spatial discretization. The semi-discrete system
of ordinary differential equations (12) is written in the form

dC

dt
= MC ,

where C now represents the solution at the discrete points, that is, C(xi, t) =

(C(xi, t), Cs(xi, t)). The matrix

M =
1

2∆x
Dc ⊗U +

1

∆x2
D2 ⊗D + I⊗ E ,

where ⊗ denotes the Kronecker product. Since this discretization is of second
order and therefore consistent with our problem, to prove the convergence of
the spatial discretization, according to Dekker and Verwer [3], we just need
to prove the existence of a constant µmax which is independent of the grid
spacing and such that µ∞[M] ≤ µmax . For A = [aij], the logarithmic matrix
norm

µ∞[A] = max
i

(
aii +

∑
j6=i

|aij|

)
.

According to the structure of the matrix M, we easily conclude that

µ∞[M] = max

{∣∣∣∣ u2∆x +
D

∆x2

∣∣∣∣− 2D

∆x2
+

∣∣∣∣− u

2∆x
+
D

∆x2

∣∣∣∣} .
Note that, if u∆x/D > 2 , then µ∞[M] = µmax = 0 . Otherwise, µ∞[M] ≤
µmax = u2D . Then µ∞[M] is bounded and the spatial discretization is
convergent.

For the full discretization we consider the Crank–Nicolson scheme

Cn+1 = Cn +
∆t

2
M
(
Cn+1 + Cn

)
. (14)
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In order to establish the C-stability of this scheme we prove the existence of
a positive real number ∆t0 = ∆t0(∆x) and a real constant C0, independent
of ∆t and ∆x, such that for each ∆t ∈]0, ∆t0] and each approximated solution
C and C̃ we have ‖C̃n+1 − Cn+1‖∞ ≤ (1+ C0∆t)‖C̃n − Cn‖∞ .

Let Cn and Cn+1, and C̃n and C̃n+1 denote two solutions of the Crank–
Nicolson scheme, that is, they verify (14). Then(

I −
∆t

2
M

)(
C̃n+1 − Cn+1

)
=

(
I −

∆t

2
M

)(
C̃n − Cn

)
.

By applying the infinity norm, ‖ · ‖∞ , for ∆tµmax < 2 , we obtain

‖C̃n+1 − Cn+1‖∞ ≤
(
2+ ∆tµmax

2− ∆tµmax

)
‖C̃n − Cn‖∞ .

Therefore, according to the results above we conclude the following.

Theorem 1 For u∆x
D
> 2 , the method (6)–(7) is unconditionally convergent.

For u∆x
D
≤ 2 , if ∆t ≤ 2

u2D
, then the method is convergent.

Note that, u∆x/D is the mesh Peclet number. When the mesh Peclet
number is less or equal to 2, the upper bound to the time step is a non-
restrictive condition, since u and D are less than one.

5 Materials and methods

A laboratory sshf system with 2.0m×0.80m×0.50m was used to carry out
two series of tracer tests at the mean flow velocity of 0.0047m h−1. The sub-
merged media was composed of gravel (0.20m in depth and porosity of 0.4).
Series I was executed with the bed without vegetation and Series II with the
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Figure 1: Schematic representation of the laboratory device (plant).

bed already colonized with Phragmites australis after an operation period of
eight months at organic loads ranging from 0.42 to 1.38 g cod m−2 h−1 (roots
were well developed and spread over the bed).

Each Series included three assays with tap water and a quickly injection
of 0.5 l of sodium chloride with a concentration of 100 g l−1 (C0) for three bed
lengths: Inlet-P2 (0.33m), Inlet-P5 (1.00m) and Inlet-P8 (1.93m). The re-
sponse was evaluated by online measurement of a conductivity TetraCon 325
probe and Multi 340i wtw meter (Figure 1). The time duration of each
assay was up to 15 times the theoretical hydraulic retention time until no
significant conductivity were observed at the measuring point.
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Assay L tfinal ε T D Pe DaI
I.P2 0.33 100 15 1000 3.0× 10−4 5.6 1.04

I.P5 1.00 250 26 3650 3.0× 10−4 29.5 0.84

I.P8 1.93 500 25 6000 4.1× 10−4 41 0.96

II.P2 0.33 100 15 1300 1.4× 10−4 12 0.80

II.P5 1.00 250 26 5700 1.5× 10−4 50 0.63

II.P8 1.93 500 25 7000 2.8× 10−4 60 0.83

Table 1: Results for Series I and II.

6 Numerical and experimental results

This section presents the experimental results and the numerical solution
which simulates the transport mechanism that occurs experimentally. These
numerical results were obtained by adjusting the parameters ε, T , D and Pe
to the experimental results, according to Table 1.

Let DaI be the experimental Damköhler number

DaI =
α(1+A/As)L

u
=
T−1ε(1+ ε−1)L2

PeD
=

(1+ ε)L2

T PeD
,

where L is the flow path length and Pe = uL/D is the Peclet number.

Wagner and Harvey [9] showed that the experimental Damköhler num-
ber, DaI, is a valuable indicator of the reliability of storage zone cross-
sectional area and exchange coefficient estimates. The use of the experi-
mental Damköhler number was adapted from similar subsurface transport
research by Bahr and Rubin [1]. Wagner and Harvey [9] found parameter
uncertainties to be lowest when DaI was on the order of 1. When DaI values
are much greater than 1, in some cases, most if not all solute undergoes some
exchange into the storage zone and the storage zone parameters can only
be estimated with large uncertainties. The experimental Damköhler num-
bers found from the transient storage modeling conducted here are listed in
Table 1. Our DaI values were found to be within acceptable limits.
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Figure 2: Solute concentration, C, in main stream. Numerical Solution (−);
Experimental results (− ·−): (a) I.P2; (b) I.P5; (c) I.P8.
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Figure 3: Solute concentration, C, in main stream. Numerical Solution (−);
Experimental results (− ·−): (a) II.P2; (b) II.P5; (c) II.P8.



References C351

Figures 2–3 show the results for the assays I.P2, I.P5 and I.P8 in clean
conditions and for the assays II.P2, II.P5 and II.P8, after an operating period
of eight months under organic loading conditions. The numerical solution
seems to perform quite well for these cases.

The results show that the changes observed in the bed from Series I to
Series II (the development of plants, roots and biofilm and the retention
of solid material) did not seem to influence the hydrodynamic characteris-
tics of the overall bed. A small amount of dispersion occurred (Pe between
40 and 60) and the flow regime was plug flow. However, a strong dispersion
in the inlet section (Pe between 5 and 12) was observed. For clean conditions
(I.P2), this circumstance may be explained by the occurrence of mixing and
molecular diffusion (both longitudinal and axial) due to the closeness of the
feeding point and the presence of a solute concentration gradient, respec-
tively. The lower dispersion observed for the colonized bed (II.P2) seemed
to be associated with the significant development of dead zones and the con-
sequent occurrence of short-circuiting. The differences observed in D and Pe
for clean and colonized conditions may be explained by spatial variations of
the effective porosity after the bed colonization.
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