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Visual cortex mapping by conjugate gradients
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Abstract

In the absence of ocular dominance, conjugate gradient iteration
applied to a certain objective function formulation reproduces the
characteristic orientation preference map structure previously derived
from a related dynamical system approach on a coarser cortex mesh.
Numerical experiments indicate a strong sensitivity to the line search
parameters and direction update, demanding careful consideration.
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1 Introduction

Visual cortex mapping calculations seek a set of receptive field quantities
residing on a two dimensional cortex mesh [4], given a set of corresponding
visual stimulus points. In one sense, the aim is to match receptive fields
with stimuli, allowing the latter to gain representation in the cortex [10],
while simultaneously there is a requirement to maintain proximity between
the receptive fields of neighbouring cortical points, ensuring a degree of lo-
cal continuity, or smoothness [9]. One way of addressing these conflicting
demands is via a self organising feature map approach [10], in which the
stimulus points are treated one by one. The receptive field of that cortical
point which best matches a given stimulus is adjusted towards the stimulus,
together with those of its immediate neighbours. Alternatively, a dynamical
system approach [9] uses a two dimensional Laplacian term to cater for lo-
cal smoothness, also related to ‘cortical wiring length’, in conjunction with
a separate term based on cortical activity patterns in response to stimuli,
averaged over the stimulus set. Analogous terms appear in a related objec-
tive function minimisation formulation [3], as outlined in Section 2, which
provides the basis for this particular study.

Orientation preference is a fundamental receptive field quantity, associ-
ated with edges in visual stimuli, that has received considerable attention in
the experimental [2] and numerical domains [4]. In the orientation context,
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a certain emphasis has been afforded to key vortex-like structures known as
orientation centres, or singularities around which iso-orientation domains are
arranged in a pinwheel fashion. For the case of a four dimensional receptive
field comprising orientation preference and retinal position, previous calcu-
lations via a dynamical system approach produced orientation preference
maps characterised by large stripe-like iso-orientation domains with sparse
pinwheel density [9]. Introducing the additional quantity of ocular domi-
nance, representing the cortical preference for input from one particular eye,
at various segregation levels, also demonstrated an intimate link between this
quantity and the rate of pinwheel annihilation. Wolf and Geisel [9] showed
that ocular dominance serves as a suppression agent for the pinwheel anni-
hilation process, independent of model parameters and details.

Conjugate gradient iteration applied to the related objective function
formulation, with a certain amount of coaxing, will reproduce the charac-
teristic pattern of iso-orientation domains expected in the absence of ocular
dominance [9], which is graphically illustrated in Section 3. Representative
iteration trajectories given in Section 3 encounter some highly oscillatory
gradient behaviour, symptomatic of ill-conditioning [8], and display a strong
sensitivity to the search direction update scheme. Gradient spikes in the tra-
jectories are also shown to coincide with certain spatial evolution processes
involving pinwheels in the orientation preference map.

2 The objective function formulation

For an N×N discrete cortex lattice, with receptive field vector uj defined at
each lattice location j = 1, . . . ,N2, the objective function

f(u;v, λ, β) =
1

2
βuTAu − λ

∑
i

log
∑

j

exp
−(uj − vi)

T (uj − vi)

2λ2
, (1)
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where u is the concatenation of all uj, and vi is a corresponding stimulus
point, represents competing demands of continuity, or smoothness, from the
first term and coverage of the stimulus space, or diversity, from the second
term. Both terms involve sums of squared differences, the first between re-
ceptive fields of immediate cortical neighbours via the sparse matrix A, and
the second between receptive fields and corresponding stimulus points, which
seek to gain a representation on the cortex [10]. Continuity improvements
drive the first term of (1) towards zero from above, and coverage improve-
ments increase the second term, to be subtracted, with an overall compromise
being sought by minimisation. Parameter λ represents the receptive field size,
and β is the strength of lateral interactions promoting local continuity [9].

For the case of a four dimensional receptive field comprising retinal posi-

tion and orientation preference, uj =
[
xj yj rj cos 2θj rj sin 2θj

]T
, in which

(xj, yj) are the centre of the receptive field in visual space [4]. Orientation
is characterised by two parameters, preference angle θ and selectivity r, re-
ferring to that orientation generating the strongest response, and to the rate
of response decay with departure from the preferred value, respectively [1].
Orientation preference differences appearing in each term of (1) are evalu-
ated via cartesian components of associated vectors with angles of twice the
orientation, as is done in the combination of differential images derived from
pairs of orthogonal stimuli to generate experimental orientation preference
maps [1], reflecting an inherent π-periodicity [10].

Each stimulus point vi in (1) contains a representative of the relevant
receptive field quantities. Visual field coordinates are normal cartesian coor-
dinates residing in the unit square [4], divided into a uniform 20 × 20 grid,
while orientation preference coordinates reside on a circle of radius equal to
the orientation selectivity [4]. Six equal angle divisions and 400 visual field
points combine to make a total of 2400 stimulus points used for this study.
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3 Numerical results

3.1 Conjugate gradient iteration

The task at hand is one of unconstrained nonlinear optimisation on the ob-
jective function (1). With the gradient easily available, nonlinear conjugate
gradient iteration [6] is an ideal candidate method, thanks to its minimal
storage requirements in the face of large scale calculations with 216 variables
for a 128× 128 cortex lattice containing four dimensional receptive fields.

A current iterate u(k) is updated according to u(k+1) = u(k) + s(k)p(k),
where the steplength s(k) is chosen to approximately minimise the objective
function φ(s) = f(u(k) + sp(k)), evaluated along the search direction p(k),
by a line search algorithm [11]. This is based on polynomial approxima-
tions to the objective function along p(k), always maintaining the correct
values of φ(0) and φ′(0). An initial quadratic approximation, agreeing with
φ(0), φ′(0) and φ(1), is minimised to yield a fourth point from which a cubic
approximation is subsequently constructed and minimised. Successive cubic
approximations, through the latest two points, are minimised until the exit
conditions [5, 6]

φ(s) − φ(0) ≤ αsφ′(0) and φ′(s) ≥ ηφ′(0) (2)

are met, with parameters obeying 0 < α < η < 1 . The new search di-
rection p(k+1) is constructed from the current direction p(k) and new gra-
dient g(k+1) according to the expression p(k+1) = γ(k)p(k) − g(k+1), with
p(0) = −g(0), and coefficient γ(k) calculated by various means including the
prp, hs, and fr schemes [6].
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Figure 1: Conjugate gradient iteration trajectories on the objective func-
tion (1), for parameters (β, λ) = (10, 0.0329), and (α, η) = (10−4, 10−3).
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3.2 Iteration performance and comparisons

Iteration trajectories for four different search direction update schemes are
shown in the (f, |∇f|) plane in Figure 1, with stopping tolerance of 10−12

on the relative absolute function difference |∆f/f|. The dominant feature
of these trajectories is a sustained period of pronounced oscillation in the
gradient norm, particularly for γ(k) 6= 0 , indicating a large proportion of
iterations for which a gradient increase accompanied the objective function
decrease. Essentially all of the objective function reduction work has been
accomplished during this initial oscillatory phase of the trajectories, which
offered little overall gradient reduction, with subsequent ‘tails’ of the tra-
jectories effectively reducing the gradient alone. Such oscillatory gradient
behaviour is not uncommon in unconstrained gradient descent optimisation,
and was shown to be a sign of ill-conditioning for the steepest descent case
(γ(k) = 0) applied to a model convex quadratic function [8], which helps to
explain the wide variations in trajectory behaviour evident in Figure 1.

The two best results, and the only ones to reach the stopping tolerance
in less than 10000 iterations, prp and hs, offer an interesting comparison.
While the prp scheme produced the lowest objective function, it did so at
the expense of a higher final gradient and over three times the number of
iterations for the hs scheme. The corresponding trajectory ‘tails’, where
most of the gradient reduction was done, contain approximately 2000 and
500 iterations respectively for the prp and hs results, the latter of which
demonstrated a far swifter gradient decay rate per iteration. Although sub-
stantial gradient reductions were achieved, by factors of more than 1000, the
final gradient norms seem slightly excessive to support declarations of local
minima at this point. Nocedal et al. [8] reported similar cases, in which
gradient norms were not reduced as much as desired, and suggested that
the iteration path of an optimisation algorithm may determine the size of
the final gradient norm. More generally, the gradient norm was cited as an
unreliable measure of accuracy in these calculations.
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Figure 2: Polar plots of the initial and final orientation preference vectors,
with corresponding stimulus points, for the prp result from Figure 1, display-
ing a pronounced outward radial migration, representing enhanced coverage
afforded by the objective function reduction.

Table 1: Relative percentage decreases in the objective function (1) and its
two components, for each of the iteration trajectories shown in Figure 1.

prp hs fr γ(k) = 0

Continuity Decrease % 0.47 -0.10 -0.48 -1.67
Diversity Decrease 3.76 3.18 2.85 2.30
Objective Function Decrease 4.64 3.83 3.35 2.43
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Relative reductions of the objective function, split into respective contri-
butions from the two competing terms of (1), are given in Table 1 for the
four schemes, in decreasing order. While each scheme reduced the diversity
component, which dominated in every case, only the prp result afforded a
simultaneous reduction of the continuity component. For this result, Figure 2
gives polar plots of the initial and final orientation preference vectors [1], to-
gether with the associated stimulus points, showing enhanced coverage mani-
fested as a pronounced radial migration of the calculated preferences towards
their stimuli, creating a ring structure with clear hexagonal tendencies on its
outer boundary. Complementary cortical plane views in Figure 3, display-
ing the related orientation preference maps [9], illustrate the accompanying
continuity enhancement in dramatic fashion. Iso-orientation domains expe-
rienced a profound expansion to yield a stripe-like pattern with local plane
wave character, presenting a stark contrast in smoothness between the ini-
tial and final states. Facilitating the formation of these large iso-orientation
domains is a depletion of pinwheel structures through annihilation events,
by which pairs of opposing pinwheels collide and merge to create local linear
zones [9], reducing the pinwheel density to a third of its initial value in this
case. Linear zones and pinwheel arrangements were observed by Bosking et
al. [2], in a laboratory study exploring the horizontal connections established
by neurons of known orientation preference.

The companion hs and fr results included for comparison in Figure 3
also underwent similar enlargement and smoothing processes, though clearly
not to the extent seen in the prp case, displaying a ranking according to their
overall degree of objective function reduction. In all three cases, the differ-
ence between initial and final orientation preference states, as expressed in
Frobenius norm, was larger than the initial value, producing relative changes
of over 100% during the iteration span. This presents a sharp contrast to the
corresponding objective function changes of below 5%.

The emergent stripe-like pattern of iso-orientation domains appearing in
Figure 3 for the prp result bears a striking resemblance to a particular result
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Figure 3: Final iterates from the conjugate gradient iteration trajectories
in Figure 1, shown as π-periodic orientation preference maps in the cortical
plane, together with the common initial condition. The hsv colourmap cycles
from red (−90◦), through yellow, green, cyan, blue, magenta and back to red.
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by Wolf and Geisel [9], generated via a dynamical system approach. Con-
sidering the coordinated development of orientation and ocular dominance
columns, with a focus on the rearrangement of iso-orientation domains un-
der varying degrees of ocular dominance segregation, ranging from none to
strong, the study [9] demonstrated an ability of ocular dominance to suppress
pinwheel annihilation. In the absence of ocular dominance columns, as for
the calculations of Figure 1, copious pinwheel annihilation was observed, in
agreement with the prp result of Figure 3. Such agreement also supports
statements by Wolf and Geisel [9] regarding an independence of model param-
eters and details, for the observed ocular dominance effects. Under similar
conditions, excluding ocular dominance, an unspecified “efficient minimiza-
tion method based on Cholesky factorization”, applied without numerical
supporting evidence by Carreira–Perpiñán, Lister and Goodhill [3] produced
a very different picture with considerably higher pinwheel density, presenting
a stark contrast with the prp result in Figure 3, and with Wolf and Geisel’s
result [9]. This substantial discrepancy in orientation preference map struc-
ture raises immediate questions concerning the numerical method used by
Carreira–Perpiñán, Lister and Goodhill [3], and whether or not their calcu-
lated result represents a converged local minimum of the objective function.

3.3 Gradient spikes

Distinct spiking activity observed in the iteration trajectories of Figure 1
must be playing a certain role in the spatial evolution process. To exam-
ine what this may be signalling, some early iteration behaviour has been
captured in Figure 4, comprising the gradient profile for the first 250 iter-
ations accompanied by three snapshots of the orientation preference map,
after 100, 125 and 175 iterations. Two prominent spikes occurred during this
interval, the first of which peaks just below 125 iterations, bringing attention
to the first two orientation preference maps in the figure. Comparing these
reveals a pinwheel annihilation event taking place in the lower left quadrant,
whereby two opposing pinwheels visible at iteration 100 collided to yield a
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locally linear iso-orientation zone at iteration 125, as also seen by Wolf and
Geisel [9]. The following spike, peaking just before iteration 175, coincides
with an event involving a quartet of pinwheels residing in the upper left
quadrant, comprising two pairs of opposing pinwheels. Individual pinwheels
in each pair are connected by a periodic interface line, made visible by the
jet colourmap as a blue-red transition, across which the preferred orienta-
tion jumps by 180◦. Close inspection of the results at iterations 125 and 175
reveals that the interconnections have actually exchanged, leaving the four
pinwheels intact and breaking a region of high positive values (red) to allow
the union of two neighbouring regions of large negative (blue) angles.

At least two different evolution processes appear to be leaving strong sig-
natures in the iteration trajectories, revealing another facet of the oscillatory
gradient behaviour which has also been linked to ill-conditioning [8]. After
the oscillation has subsided, in the trajectory tails of Figure 1, this suggests
that little further structural evolution should occur. For the prp result, the
relative change between iteration 4000 and the final result is just under 13%.

4 Summary and conclusions

For a four dimensional receptive field comprising orientation preference and
retinal coordinates, conjugate gradient iteration has succeeded in transform-
ing a pinwheel-rich initial state to yield a very similar orientation preference
map structure to that of a previous study utilising a dynamical system on
a coarser cortical mesh at different parameter settings, reinforcing some of
its key conclusions. To achieve this agreement required a sufficiently low ob-
jective function value, only attained after experimenting with various search
direction updates and line search parameter settings. Persistent gradient os-
cillation in the iteration trajectories was linked to ill-conditioning and certain
spatial evolution processes involving pinwheel structures in the orientation
preference map.
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Figure 4: Computed orientation preference maps after 100, 125 and 175 prp
iterations, showing a pinwheel annihilation event in the lower left quadrant
between iterations 100 and 125, circled, followed by a different event involving
a quartet of pinwheels in the upper left quadrant, also circled. Both events
appear to have left strong spike signatures in the gradient profile.
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Before extending the calculations to higher dimensional receptive fields,
beginning with the inclusion of ocular dominance as the fifth dimension, addi-
tional four dimensional studies will be carried out via quasi Newton methods
with reduced Hessian approximations [7]. At little extra storage cost, these
methods offer potential performance advantages over the conjugate gradient
iteration, and their iteration trajectories should provide interesting compar-
isons, particularly with regard to the degree of gradient reduction.
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