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Abstract

We investigate the numerical solution of an integro-differential
equation with a memory term. For the time discretization we ap-
ply the continuous Petrov–Galerkin method considered by Lin et al.
[SIAM J. Numer. Anal., 38, 2000]. We combined the Petrov–Galerkin
scheme with respect to time with continuous finite elements for the
space discretization and obtained a fully discrete scheme. We show op-
timal error bounds of the numerical solutions for both schemes, and
compare our theoretical error bounds with the results of numerical
computations.
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1 Introduction

We study a class of numerical solutions for a linear integro-differential equa-
tion of the form

u ′(t) +Au(t) +

∫ t
0

b(t, s)Au(s)ds = f(t) , t ∈ (0, T ] with u(0) = u0 ,

(1)

where u ′(t) := ∂u
∂t

(t), u(t) = u(x, t) and f(t) = f(x, t) with x ∈ Ω (Ω is
a bounded domain subset of Rm, m ≥ 1). Here A is a linear, positive
definite, self-adjoint operator with domain D(A) in a real Hilbert space H.
The solution u and the source term f take values in H, and the initial data u0
is an element of H. We set ‖v‖p = ‖Ap/2v‖ = 〈Apv, v〉1/2, where ‖.‖ is the
norm and 〈·, ·〉 is the inner product in H.

For 0 ≤ i+ j ≤ 1 and for some 0 < α < 1 , we assume that∣∣∣∣ ∂i+j∂ti∂sj
b(t, s)

∣∣∣∣ ≤ C(t− s)α−1 . (2)
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Many have considered numerical methods of the problem (1). Typically, time
discretization is performed by either using finite difference or continuous and
discontinuous finite elements with a quadrature. Finite difference and dis-
continuous Galerkin in time, and finite elements in space have been discussed
in the case of a smooth and non-smooth memory term (Larsson et al. [1] and
Zhang [4]). Another approach using Laplace transform has been studied, for
example, by McLean et al. [3].

In this article we solve the problem (1) using the Petrov–Galerkin method
with respect to time (pgmt). Then we combine the pgmt with the finite el-
ements discretization in space, which defines a fully discrete Petrov–Galerkin
(pg) finite element method (pgfem) for (1). We derive the error estimates
from both schemes. In addition, we present numerical evidence that our error
bounds are optimal.

Unlike the standard Galerkin method, which is a special case of the pg
method, the pg method allows the trial and test spaces to be different. The
considered pgmt in this work is similar to the Petrov–Galerkin method stud-
ied by Lin et al. [2] for linear Volterra integro-differential equations. The
pgmt is a hybrid of the continuous and discontinuous Galerkin methods
with respect to time. The trial space is the same as of that the continu-
ous Galerkin method and the test space is a duplication of the test space in
the discontinuous Galerkin method. Because of the discontinuity of the test
space, the present method is highly stable. Theoretically, if the approximate
solution is a piecewise linear polynomial in time, optimal order convergence
results using L∞-norm in time and the norm ‖ ·‖` in space (for ` = 0, 1) have
been shown globally of the pgfem. Proving the convergence in the L∞-norm
in time and the norm ‖ · ‖1 in space is a marked theoretical advantage over
the other existing numerical methods for solving (1). Practically, the number
of unknowns in the pgmt method is fewer than the number of unknowns in
the discontinuous Galerkin method with respect to time.
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By setting ũ(t) = u(t) − u(0), equation (1) becomes

ũt +Aũ(t) +

∫ t
0

b(t, s)Aũ(s)ds = f(t) −Au(0) −

∫ t
0

b(t, s)Au(0)ds

for t ∈ (0, T ] with ũ(0) = 0 . Therefore, without loss of generality, instead
of (1), we consider the problem

ut +Au(t) +

∫ t
0

b(t, s)Au(s)ds = f(t) for t ∈ (0, T ] with u(0) = 0 .

(3)

To define our time pgmt, we introduce the time partitions: 0 = t0 < t1 <

· · · < tN = T of [0, T ] and denote the step sizes by kn = tn−tn−1 . We set the
time intervals In = (tn−1, tn], and the maximum step size k = maxn kn . For
m ≥ 1 , let Pm(D(A1/2)) denote the space of polynomials in the variable t of
degree strictly less than m with coefficients in D(A1/2). Let

Wk(D(A1/2)) := {X ∈ C([0, T ], D(A1/2)) : X(0) = 0,

X|In ∈ P2(D(A1/2)), 1 ≤ n ≤ N},

Tk(D(A1/2)) := {X ∈ L2([0, T ], D(A1/2)) : X|In ∈ P1(D(A1/2)), 1 ≤ n ≤ N},

be the trial and test spaces respectively.

The pgmt of problem (3) is: compute U : [0, T ] × Ω → Wk(D(A1/2))

such that

GN(U,X) =

∫ T
0

〈f(t), X(t)〉dt for all X ∈ Tk(D(A1/2)) (4)

where

GN(U,X) =

∫ T
0

[〈U ′(t), X(t)〉+A(U(t), X(t))] dt

+

∫ T
0

∫ t
0

b(t, s)A(U(s), X(t))dsdt , (5)
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and A(u,w) denote the bilinear forms on D(A1/2) generated by 〈Au,w〉.

The solution u of (3) satisfies GN(u,X) =
∫tN
0
〈f(t), X(t)〉dt for all X ∈

Tk(D(A1/2)). So U− u satisfies the orthogonality condition

GN(U− u,X) = 0 for all X ∈ Tk(D(A1/2)) . (6)

Because the function X in Tk(D(A1/2)) is not required to be continuous at
the nodes tn for 1 ≤ n ≤ N , we choose its values on the different time
intervals independently. By choosing X to vanish outside In, our numerical
scheme (4) reduces to one equation for each In for 1 ≤ n ≤ N . Therefore,
the scheme (4) requires us to determine U ∈ Wk(D(A1/2)) such that, for
n = 1, . . . ,N ,∫ tn
tn−1

[
〈U ′(t), X(t)〉+A(U(t), X(t))

]
dt+

∫ tn
tn−1

∫ t
0

b(t, s)A(U(s), X(t))dsdt

=

∫ tn
tn−1

〈f(t), X(t)〉dt for all X ∈ P1(D(A1/2)) . (7)

For the fully discrete scheme we assume that H = L2(Ω) for a bounded,
convex domain Ω, and that A is a strongly elliptic, second order partial
differential operator subject to homogeneous Dirichlet boundary conditions.
We also assume that Hr(Ω) = Hr(Ω) and H1

0(Ω) = H10(Ω) denotes the space
of all functions φ ∈ H1(Ω) with φ = 0 on ∂Ω.

To describe our fully discrete scheme, we triangulate and define the usual
continuous, piecewise linear finite element space Sh ⊆ H1

0(Ω), where h de-
notes the maximum diameter of the elements. Let the mesh be quasi-uniform
so that the Ritz projector Rh : H1

0(Ω) → Sh for the positive definite bilinear
form A(u, v) which is defined by A(Rhv − v, χ) = 0 for all χ ∈ Sh , has the
approximation property

‖v− Rhv‖` ≤ Chr−`‖v‖r for v ∈ H1
0(Ω) ∩Hr(Ω) with r ≥ 2 , (8)
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where ‖v‖m := ‖v‖Hm(Ω) = ‖v‖Hm(Ω). Let P2(Sh) and P1(Sh) denote the
spaces of polynomials in the variable t of degree strictly less than 2 and 1
respectively with coefficients in Sh. Define the corresponding trial and test
spaces of piecewise polynomials Wk(Sh) and Tk(Sh) respectively.

By combining the pgmt introduced above with the use of finite elements
for the approximation in the spatial variables, we arrive at a fully discrete
pgfem of problem (3) which is: compute Uh : [0, T ] × Ω → Wk(Sh) such
that

GN(Uh, X) =

∫ tN
0

〈f(t), X(t)〉dt for all X ∈ Tk(Sh) . (9)

The next section, §2, proves the stability of the proposed numerical schemes.
Optimal order convergence using L∞-norm in time and H`-norm in space is
shown in Section 3 for ` = 0, 1 . Some numerical experiments demonstrating
our theoretical results are given in Section 4

2 Stability results

We study next the stability of the approximate solution U defined by (4)
or equivalently by (7). Since (4) and (9) have the same form, the stability
of the fully discrete solution Uh defined by (9) can be obtained in a similar
manner.

Throughout the rest of the article, we assume that b(t, t) = 0 ; however,
our approach to prove the stability and the convergence can be extended
to cover the case that b(t, t) is not zero. In the next theorem we show
the stability of the approximate solution U. For brevity, we introduce the
following notations

Un = U(tn) , ‖U‖Jn = sup
t∈Jn
‖U(t)‖ and
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‖U‖p,Jn = sup
t∈Jn
‖U(t)‖p where Jn =

n⋃
j=1

Ij .

Theorem 1 Given U0 ∈ H and f ∈ L2
(
(0, T); H

)
, then the approximate

solution U defined by (4) is stable and

‖U‖21,Jn ≤ C
∫ tn
0

‖f(t)‖2 dt for n = 1, 2, . . . ,N .

Proof: Choose X = U ′ in (4) and noting that 〈U ′(t), U ′(t)〉 = 1
2
‖U ′(t)‖2 ≥

0 and A(U(t), U ′(t)) = 1
2
d
dt
A(U(t), U(t)), we have∫ tj

tj−1

‖U ′(t)‖2 dt+A(Uj, Uj) −A(Uj−1, Uj−1)

+ 2

∫ tj
tj−1

∫ t
0

b(t, s)A(U(s), U ′(t))dsdt = 2

∫ tj
tj−1

〈f(t), U ′(t)〉dt .

Hence, summing from j = 1 to j = n and using the Cauchy–Schwarz inequal-
ity, we find that∫ tn

0

‖U ′(t)‖2 dt+ ‖Un‖21 = 2

∫ tn
0

〈f(t), U ′(t)〉dt− 2In

≤ 2
∫ tn
0

‖f(t)‖‖U ′(t)‖dt− 2In ≤
∫ tn
0

‖f(t)‖2 dt+

∫ tn
0

‖U ′(t))‖2 dt− 2In ,

(10)

where

In =

∫ tn
0

∫ t
0

b(t, s)A(U(s), U ′(t))dsdt.

Reversing the order of integrals, integrating by parts, and using b(t, t) = 0

and U0 = 0 , we obtain

In =

∫ tn
0

∫ tn
s

〈b(t, s)AU(s), U ′(t)〉dtds
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=

∫ tn
0

(
〈b(tn, s)AU(s), U(tn)〉−

∫ tn
s

〈bt(t, s)AU(s), U(t)〉dt
)
ds

=

∫ tn
0

〈
b(tn, s)

d

ds

∫ s
0

AU(q)dq,U(tn)

〉
ds

−

∫ tn
0

∫ t
0

〈bt(t, s)AU(s), U(t)〉dsdt

= −

∫ tn
0

∫ s
0

〈bs(tn, s)AU(q), U(tn)〉dqds

−

∫ tn
0

∫ t
0

〈bt(t, s)AU(s), U(t)〉dsdt .

Hence, using (2), we find that

|In| ≤ C
∫ tn
0

(tn − t)α−1

∫ t
0

‖U(s)‖1‖U(tn)‖1 dsdt

+ C

∫ tn
0

‖U(t)‖1
∫ t
0

(t− s)α−1‖U(s)‖1dsdt

and thus, the ε inequality and Lemma 6.3 of Larsson et al. [1] yield

|In| ≤ ε1tα+1
n ‖U(tn)‖21 + Cε1

∫ tn
0

(tn − t)α−1

∫ t
0

‖U(s)‖21 dsdt

+ ε2

∫ tn
0

‖U(t)‖21 dt+ Cε2

∫ tn
0

(∫ t
0

(t− s)α−1‖U(s)‖1 ds
)2
dt

≤ ε1tα+1
n ‖U(tn)‖21 + ε2

∫ tn
0

‖U(t)‖21 dt

+ Cε1,ε2

∫ tn
0

(tn − t)α−1

∫ t
0

‖U(s)‖21 dsdt .

Inserting this bound in (10) and choosing ε1 sufficiently small, we obtain

‖Un‖21 ≤ C
∫ tn
0

‖f(t)‖2 dt+ 2ε2

∫ tn
0

‖U(t)‖21 dt
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+ Cε2

∫ tn
0

(tn − t)α−1

∫ t
0

‖U(s)‖21 dsdt . (11)

Since ‖U‖1,Jn = ‖Un0‖1 for some 1 ≤ n0 ≤ n , and so by using (11) for
n = n0 , we achieve∫ tn0

0

‖U(t)‖21 dt ≤ tn0
‖Un0‖21 ≤ Ctn0

∫ tn0

0

‖f(t)‖2 dt+ 2tnε2

∫ tn0

0

‖U(t)‖21 dt

+ Cε2
tn0

∫ tn0

0

(tn0
− t)α−1

∫ t
0

‖U(s)‖21 dsdt .

Thus, for ε2 sufficiently small, we have∫ tn0

0

‖U(t)‖21 dt ≤ C
∫ tn0

0

‖f(t)‖2 dt+ C

∫ tn0

0

(tn0
− t)α−1dt

∫ tn0

0

‖U(s)‖21 ds .

Now, an application of Lemma 6.4 of Larsson et al. [1] yields
∫tn0

0
‖U(t)‖21 dt ≤

C
∫tn0

0
‖f(t)‖2 dt . Inserting this into (11), we find that

‖U‖21,Jn = ‖Un0‖21,Jn

≤ C
∫ tn0

0

‖f(t)‖2 dt+ C

∫ tn
0

(tn0
− t)α−1

∫ tn0

0

‖f(s)‖2 dsdt

≤ C
∫ tn0

0

‖f(s)‖2 ds ≤ C
∫ tn
0

‖f(s)‖2 ds .

♠

3 Error estimates

We estimate the errors U−u and Uh−u where U and Uh are the approximate
solutions obtained using the pgmt and pgfem respectively. In the next two
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theorems we assume that there exists a constant C0 such that

‖u ′′‖`,Jn +

∫ tn
0

‖Au ′′(t)‖2 dt ≤ C0 for all 1 ≤ n ≤ N .

In the following theorem we derive the error U − u when U is given by (4)
and u is the continuous solution of (3).

Theorem 2 Let U and u be the solutions of (4) and (3) respectively. Then

‖U− u‖`,Jn ≤ Ck2 for ` = 0, 1 and for all 1 ≤ n ≤ N .

Proof: Let Πu ∈ Wk(D(A1/2)) be a continuous piecewise linear interpolant
of u defined by

Πu(tn) = u(tn) for n = 0, 1, . . . ,N .

Put θ = U− Πu and η = Πu− u . We decompose the error into two terms,

U− u = θ+ η , (12)

and estimate each term separately. For ` = 0, 1 ,

‖η‖`,Jn ≤ Cmax
1≤j≤n

(
kn

∫ tj
tj−1

‖u ′′(t)‖` dt

)
≤ Ck2‖u ′′‖`,Jn ≤ Ck2 . (13)

To estimate the term θ in (12), we use the orthogonality relation (6) and get

GN(θ, X) = −GN(η, X) for X ∈ Tk(D(A1/2)) with 1 ≤ n ≤ N .

Using the defining properties of Πu and X is constant on In, we conclude

GN(θ, X) = −

∫ tN
0

〈
Aη(t) +

∫ t
0

b(t, s)Aη(s)ds, X(t)

〉
dt (14)
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for all X ∈ Tk(D(A1/2)). Equation (14) has the same form as the equation (4)
which is satisfied by U, so we apply the stability result of Theorem 1 and
obtain

‖θ‖21,Jn ≤ C
∫ tn
0

(
‖Aη(t)‖+

∫ t
0

|b(t, s)| ‖Aη(s)‖ds
)2

for 1 ≤ n ≤ N .

The Cauchy–Schwarz inequality, (2), Lemma 6.3 of Larsson et el. [1], and (13),
yield

‖θ‖21,Jn ≤ 2
∫ tn
0

‖Aη(t)‖2 dt+ C

∫ tn
0

(∫ t
0

(t− s)α−1‖Aη(s)‖ds
)2
dt

≤ 2
∫ tn
0

‖Aη(t)‖2 dt+ C

∫ tn
0

(tn − t)α−1

∫ t
0

‖Aη(s)‖2 dsdt

≤ C
n∑
j=1

∫ tj
tj−1

‖Aη(t)‖2 dt

≤ C
n∑
j=1

kj

(
kj

∫ tj
tj−1

‖Au ′′(s)‖ds

)2
dt

≤ C
n∑
j=1

k4j

∫ tj
tj−1

‖Au ′′(s)‖2 ds

≤ Ck4 . (15)

Therefore, using (12), (13), and (15), we obtain the desired result. ♠

Next we estimate the error Uh−u where Uh is the approximate solution
obtained using the pgfem and u is the continuous solution of (3).

Theorem 3 If u is the solution of the problem (3) and if Uh is the approx-
imate solution defined by (9), then for r ≥ 2 and ` = 0, 1 ,

‖Uh − u‖`,Jn ≤ Ck2 + Chr−`
(∫ tn

0

‖u ′(t)‖2r dt
)1/2

for all 1 ≤ n ≤ N .
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Proof: We use the Ritz projector Rh and decompose the error as

Uh − u = (Uh − ΠRhu) + (ΠRhu− u) . (16)

So,

‖Uh − u‖`,Jn ≤ ‖ΠRhu− u‖`,Jn + ‖Uh − ΠRhu‖`,Jn for ` = 0, 1 . (17)

To estimate the first term ΠRhu − u , we write ξ = Rhu − u , using (13),
ξ(0) = 0 , and (8) with u ′ in place of v, we observe that for ` = 0, 1 ,

‖ΠRhu− u‖`,Jn = ‖Πu− u+ Π(Rhu− u)‖`,Jn
≤ ‖Πu− u‖`,Jn + ‖ξ‖`,Jn

≤ ‖Πu− u‖`,Jn + ‖ξ(0)‖` +
∫ tn
0

‖ξ ′‖` dt

≤ Ck2 + Chr−`
∫ tn
0

‖u ′(t)‖r dt . (18)

The Galerkin orthogonality property (6) now takes the form

GN(Uh − u,X) = 0 for all X ∈ Tk(Sh). (19)

Adapting the proof of Theorem 2, we see from (19) that

GN(Uh − V,X) = −GN(V − u,X) for all X ∈ Tk(Sh), (20)

where V := ΠRhu , and because∫ tn
tn−1

〈V ′, X〉dt = 〈ΠRhu(tn) − ΠRhu(tn−1), X(tn−1/2)〉

= 〈Rhu(tn) − Rhu(tn−1), X(tn−1/2)〉

=

∫ tn
tn−1

〈(Rhu) ′, X〉dt =

∫ tn
tn−1

〈Rhu ′, X〉dt ,
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the formula (5) gives

GN(V − u,X) =

N∑
n=1

∫ tn
tn−1

〈
ξ ′ +A(V − u) +

∫ t
0

b(t, s)A(V − u)(s)ds, X

〉
dt .

The definition of the Ritz projector gives

A
(
V − u,X

)
= A

(
RhΠu− u,X

)
= A

(
Πu− u,X

)
= 〈Aη,X〉 ,

so

GN(V − u,X) =

∫ tN
0

〈
ξ ′ +Aη+

∫ t
0

b(t, s)Aη(s)ds, X

〉
dt .

Thus, from (20),

GN(Uh − V,X) = −

∫ tN
0

〈
ξ ′ +Aη+

∫ t
0

b(t, s)Aη(s)ds, X

〉
dt .

for all X ∈ Wk(Sh). Stability of the pgmt (Theorem 1 with H = Sh) and

the already estimated term
∫tn
0
‖Aη +

∫t
0
b(t, s)Aη(s)ds‖2 dt in Theorem 2

now yield the estimate

‖Uh − V‖21,Jn ≤ C
∫ tn
0

(
‖ξ ′‖2 +

∥∥∥Aη+

∫ t
0

b(t, s)Aη(s)ds
∥∥∥2)dt

≤ Ck4 + Ch2r
∫ tn
0

‖u ′(t)‖2r dt . (21)

Inserting (21) in (17) and using (18) we complete the proof. ♠

4 Numerical experiments

We apply the fully discrete pgfem (9) to solve a one dimensional problem
of the form (3) over the time interval [0, 1]. Our approximate solution is
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N = M N = M N = [M1/2]

M ‖Uh − u‖L∞(L2) ‖Uh − u‖L∞(H1) ‖Uh − u‖L∞(H1)

40 1.6e-03 2.0e-01 2.0e-01
80 4.0e-04 1.999 1.0e-01 0.999 1.0e-01 0.999

160 1.0e-04 2.006 5.0e-02 0.999 5.0e-02 1.002
320 2.2e-05 2.121 2.5e-02 0.999 2.5e-02 0.999
640 5.7e-06 2.120 1.2e-02 0.999 1.2e-02 1.001

Table 1: The errors ‖Uh − u‖L∞(L2) (= ‖Uh − u‖0,JN) and ‖Uh − u‖L∞(H1)

(= ‖Uh−u‖1,JN) and the order of convergence using a uniform mesh in both
time and space consisting of N and M subintervals respectively.

a piecewise linear polynomial in the time and space variables, so r = 2 in
Theorem 3.

We let Ω = (0, 1), Au = −2uxx , and for 0 ≤ s ≤ t ≤ 1 , b(t, s) =

(t−s)α/Γ(α+ 1), where Γ is the standard gamma function and α = 0.7 . We
assume that u = u(x, t) satisfies homogeneous Dirichlet boundary conditions
u(0, t) = 0 = u(1, t) for all t ∈ [0, 1]. We choose f(x, t) such that u =

−tα+1 sin(2πx) is the exact solution of (3). Thus

f(x, t) = −
[
(α+ 1)tα + 8π2tα+1 + 4π2t2(α+1)Γ(α+ 2)/Γ(2α+ 3)

]
sin(2πx) .

We see that the global error ‖Uh−u‖`,JN shown in Table 1 is of order h2−`+k2

for ` = 0, 1 , and so is consistent with our theoretical results in Theorem 3.
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