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Automated registration for augmenting
micro-CT 3D images
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Abstract

Micro-ct imaging allows probing of material 3D structure down
to the micrometre scale. However, often there exists structure at
the sub-micrometre scale which significantly influences the macro-
physical properties of the material. One possible solution for mitigat-
ing this micro-ct resolution limitation is to incorporate information
from higher resolution Back-scattered Scanning Electron Microscopy
(bsem) imaging techniques. A first step toward incorporating this
high resolution data into micro-ct models is to align the bsem 2D
image(s) with the corresponding region(s) of the micro-ct 3D image.
This article presents an automated multi-start multi-resolution paral-
lel registration algorithm which has been successfully used to achieve
accurate alignment of bsem and micro-ct image pairs.

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/1389
gives this article, c© Austral. Mathematical Soc. 2008. Published December 16, 2008.
issn 1446-8735. (Print two pages per sheet of paper.)

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/1389


Contents C535

Contents

1 Introduction C535

2 Registration algorithm C536
2.1 Algorithm steps . . . . . . . . . . . . . . . . . . . . . . . . C537
2.2 Parallel implementation . . . . . . . . . . . . . . . . . . . C539

3 Image alignment results C539

4 Powell local optimization C544

5 Discussion C545

References C547

1 Introduction

The study of X-ray micro-ct tomograms provides a variety of information
regarding pore and matrix structure of a rock core. However, a complete anal-
ysis is often impeded because there exist significant regions in the core sample
which contain pore or rock-matrix features below the micro-ct imaging res-
olution. Almost every carbonate rock and any rock or soil containing clay
contains micropores smaller than 100 nanometres, which are key to under-
standing seismic and transport properties. Micro-ct analysis is enhanced by
combining complementary information from other imaging techniques with
the micro-ct data in an attempt to describe the core structure at micro, meso
and macro scales [4]. bsem imaging is capable of resolving features at the
nanometre scale and hence offers the opportunity to resolve micropore struc-
ture. Here we consider the first step in utilizing this high resolution bsem
data, which is to accurately align the bsem 2D image with the corresponding
region of the micro-ct 3D image. The accurate alignment allows direct vi-
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sual comparison of image features and provides a means of visually assessing
the quality of the micro-ct image. In addition to this qualitative advantage,
there is the potential for quantitative benefit by associating micro-ct grey
levels with a porosity calculated from the bsem images.

This article presents a registration algorithm which is a generalised and
parallelised form of that used by Jenkinson and Smith [2] to register 3D
images of the brain. The algorithm solves a global optimization problem
via a multi-start multi-resolution approach and the c++ implementation
uses the Message Passing Interface to take advantage of high performance
computer architectures.

2 Registration algorithm

Solutions to the image registration problem are well represented in the lit-
erature and a recent survey of techniques can be found in the reviews by
Brown [1] and Zitová [6]. To register a bsem image with the correspond-
ing micro-ct image, this article adopts the common approach of formulating
the alignment task as a global optimization problem. Fundamental to this
formulation is a cost function or distance metric which gives a quantitative
value indicating the merit of the alignment between two images with re-
spect to a number of transform parameters. bsem images are very similar to
X-ray projection images, since both methods are primarily sensitive to the
density of the electron cloud surrounding each atom. Because of this simi-
larity in image modality, the correlation coefficient metric has proven to be
a sufficient discriminator of alignment for bsem and micro-ct image pairs.
bsem 2D images represent a thin planar slice through the 3D core sample
and therefore a rigid transformation should be sufficient to align the bsem
image within the micro-ct image. Here, the similarity transformation was
used as the allowable deformation. The similarity transform consists of a
rigid transformation plus an isotropic scaling. The scaling degree of freedom
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(dof) accounts for small errors in pixel/voxel size estimates. The optimiza-
tion problem is thus defined to minimize the negative correlation coefficient
with respect to seven parameters/dof (three translational, three rotational
and an isotropic scaling).

A global minimization algorithm is required to solve the optimization
problem. In general, registration cost functions contain many local minima
which precludes the exclusive use of local descent methods. In this article,
a multi-resolution approach is combined with an exhaustive low resolution
search. At the lowest resolution the exhaustive search produces a small set
of transformation parameters, at least one of which is within the capture
radius of a global minimum. These initial sets of transformation parameters
are used as starting solutions for a local numerical optimization method (a
variation of Powell’s direction set algorithm [5]) to further refine and reduce
the transformation parameter sets at increasing resolutions until the final
best transformation parameters are determined at the highest resolution.

2.1 Algorithm steps

1. Pre-process images. The reconstructed tomographic 3D images are pre-
processed to identify any voxels which are not contained with the core
sample region. These voxels are assigned a mask-attenuation value.
Voxels with mask-attenuation value do not contribute to the evaluation
of the distance metric. Lower resolution bsem images generally contain
distortion which is removed during pre-processing. All bsem images are
then combined via 2D registration into a mosaic. Pixels in the bsem
image which do not lie within the core sample region are also assigned
a mask-attenuation value.

2. Exhaustive search at lowest resolution. Set search index s = 0 . The
pair of images are down sampled by a power-of-two factor d0, which is
determined by the size of the features present in the images. The results
in this article used a maximum down sample factor of d0 = 16 in each
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dimension so that a 20483 voxel image is down sampled to generate a
1283 voxel image. An exhaustive search is conducted by evaluating the
distance metric at points which form a regular grid in the transforma-
tion parameter space. The translational step length is that of a down
sampled voxel side, and the rotational step size is two degrees. In this
step, the rotational dof are restricted to the z-axis as bsem images are
generated from thin sections taken (approximately) from the xy-plane,
and the micro-ct images are generated from samples which have their
cylindrical axis aligned with the z-axis. The scaling parameter is held
constant at one, as the tomogram voxel side lengths and bsem pixel
side lengths are generally known to within ±3% and this scaling error is
not significant for the highest image down sampling. Keep the N0 sets
of transformation parameters, which gave the N0 lowest values of the
distance metric. These N0 parameter sets are used as starting solutions
for the iterative local optimization.

3. s = s+ 1 , ds = ds−1 .

4. Check if finished. If ds < 1 then go to Step 7.

5. Perform local mathematical optimizations. Create new image pair by
down sampling the original image pair by a factor of ds. For each of
the Ns−1 best transformation parameters, perform a local optimization
with the solution from the previous step as the starting point. Keep
the Ns sets of transformation parameters, which gave the Ns lowest
values of the distance metric.

6. Update down sample factor. s = s+ 1 , ds = ds−1/2 , go to Step 4.

7. Finished. The best transformation parameters from the previous step
are the final solution giving the optimal alignment of the original fixed
and moving images.
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2.2 Parallel implementation

In order for the above global minimization method to be computationally
feasible, there are two parallelisation strategies which are used when imple-
menting the steps in software on high performance Non-Uniform Memory
Access architectures. The first is a task parallelism strategy where individ-
ual tasks are performed independently on computational units. The second
strategy is a data parallelism approach where each computational unit con-
tains only a subset of the discrete image pair data. Task parallelism is of great
advantage when calculating the distance metric values in Step 2. At low res-
olutions each computational unit evaluates the distance metric for a subset
of the transformation parameter grid points independently of other compu-
tational units. When all computational units have evaluated their subset of
values, there is a result collection stage where the subsets of values are gath-
ered from each of the computational units in order to rank the best transform
parameters. Similarly, task parallelism is used to advantage in Step 5 for the
lower resolution images, where each computational unit performs a subset of
the iterative local optimizations, independently of other computational units.
For the higher resolution images, the data parallel strategy is preferred. In
this strategy, each computational unit only contains a subset of the discrete
image data. Step 5 is then performed using a Master/Worker division of
labour. The master computational unit controls the iterative optimization
algorithm while each worker computational unit calculates a portion of the
total distance metric result based on the subset of image data held in its
local ram.

3 Image alignment results

To obtain high resolution bsem images from within the volume imaged by
micro-ct, we used the following experimental protocol. The sample, usually
a cylinder with a diameter of 5mm, was initially imaged in the micro-ct.
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The same sample was then cut perpendicular to the axis of the cylinder and
one half was impregnated with epoxy. The impregnated half was then pol-
ished down to form a thin section with a thickness of approximately 30µm.
The thin section was finally mounted on a glass slide. This is a destructive
process which precludes re-imaging of the sample. bsem images of core sam-
ple thin sections were obtained at a number of resolutions, (for the samples
shown here, magnifications factors were 40×, 450× or 1000×). For the
lowest magnification, a series of bsem scans was performed so that the en-
tire area of the core sample thin section is imaged. These lowest resolution
bsem 2D images were individually pre-processed to remove spatial distor-
tion. Spatial distortion is inherent in the bsem image acquisition apparatus.
The spatial distortion removal process used a bsem image of a known grid to
calculate a warp field which is subsequently used to correct the bsem images.
The separate bsem thin section images were then registered to form a single
montage image of the entire thin section. This 2D registration was performed
using a phase correlation frequency domain technique (Kuglin and Hines [3]
or Brown [1] give descriptions), which is highly efficient at determining trans-
lational shifts between images. The result of this 2D registration is a mosaic
image typically containing approximately 4000× 4000 pixels. The montage
image was then registered with the micro-ct 3D image by employing our
multi-start multi-resolution algorithm, with the correlation coefficient used
as the distance metric and the similarity transformation defining the seven
dof of the optimization problem. The higher resolution bsem images were
registered with the bsem montage image and then overlaid with the corre-
sponding region of the registered micro-ct image.

Figure 1 shows bsem images (left column) of two carbonate samples with
the registered region of their corresponding micro-ct image (right column).
The left column contains montage images formed by performing 2D registra-
tion on the de-warped ‘quadrants’ bsem images. The right image of the first
row is the corresponding slice of the micro-ct 3D image (2.59µm voxel size).
The alignment between the two images is good, with a correlation coefficient
of 0.601 . Figure 1 highlights the similarity of the bsem images and the



3 Image alignment results C541

Figure 1: bsem images of carbonate samples (left column) and registered
region of corresponding micro-ct 3D image (right column).



3 Image alignment results C542

Figure 2: High resolution 1000 × magnification bsem image (top) and
registered region of micro-ct image (bottom) from the sample shown in the
top row of Figure 1.
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Figure 3: High resolution 450×magnification bsem image (top) and reg-
istered region of micro-ct image (bottom) from the sample shown in the
bottom row of Figure 1.
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reconstructed X-ray projection images, a result of the fact that both tech-
niques calculate image intensities which are primarily related to the density
of the electron cloud surrounding each atom. There are noticeable differ-
ences between the two images in the top row of Figure 1 where some of the
larger empty pore spaces in the micro-ct image appear to have non-empty
counterparts in the bsem image. Presumably, there has been some disrup-
tion to the sample during the thin section preparation. The bottom row of
Figure 1 shows good alignment between the montage bsem image on the left
(40×magnification, 1.24µm pixel size) and the micro-ct image slice on the
right (2.69µm voxel size) with a correlation coefficient of 0.716 . Figure 2
shows the 1000 × magnification bsem image (top), from the sample in the
top row of Figure 1 and the corresponding region of the micro-ct 3D im-
age (bottom). The high resolution bsem image clearly illustrates features
(porosity) which are not easily classifiable in the micro-ct image. The upper
image in Figure 3 is a 450×magnification bsem image (0.110µm pixel size)
of the sample from the bottom row of Figure 1 and the lower image is the
corresponding region of the micro-ct image.

4 Powell local optimization

A modified Powell direction-set local optimization method was used in the
registration procedure [5]. The implementation uses Brent’s method [5] for
the line minimization. The Powell method does not require cost function gra-
dients and is relatively simple to implement. While it is possible to approx-
imate correlation coefficient gradients, with respect to the seven similarity
transformation dof, we have opted for a non-gradient optimization method
in order to simplify the implementation and to allow for the immediate eval-
uation of distance metrics (and/or transformation parameterisations) where
the gradients are not so easily estimated.

The stopping/convergence criteria for the Powell iteration was specified
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d1 = 16 d2 = 8 d3 = 4 d4 = 2 d5 = 1

Registration 1 7.0 [4, 16] 4.0 [3, 4] 4.5 [4, 6] 8.1 [6, 13] 5.0 [5, 5]

Registration 2 5.6 [4, 15] 4.6 [4, 7] 6.7 [5, 12] 10.3 [6, 14] 5.0 [5, 5]

Table 1: Powell iteration count statistics: mean, minimum and maximum
iterations shown for each resolution with down sample factor ds, s = 1, . . . , 5 .

as a relative tolerance for the change in distance metric value between Powell
(outer) iterations. For the full resolution optimization (search s = 5), this
tolerance was set to τ5 = τ = 10−8, which is (approximately) equivalent to
four significant figures of accuracy in each of the transformation dof. For
the lower resolution optimizations, the tolerance for search s is made less
stringent by setting the stopping criterion to be τs = τds

2. In addition
to the relative tolerance stopping criterion, the iterative optimization was
stopped when the number of iterations exceeded 16. Table 1 presents iter-
ation statistics for the Powell method used to register the images pairs of
Figure 1 (Registration 1 data is for the top row image pair and the Regis-
tration 2 data is for the bottom row image pair). For search s = 1, 2, 3, 4, 5,
the number of local optimizations Ns−1 were N0 = 64 , N1 = 32 , N2 = 16 ,
N3 = 8 and N4 = 1 .

5 Discussion

Our registration method uses an exhaustive search at a down-sampled reso-
lution in order to determine similarity transformation parameters which are
within the global minimum capture radius of the correlation coefficient dis-
tance metric. The exhaustive search is computationally feasible in this case
because of four factors:

1. feature size in the images allow a significant down-sample factor;
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2. the use of task-parallelism to concurrently compute correlation coeffi-
cient values;

3. using a priori knowledge about the orientation of the thin section used
to generate the bsem image in order to reduce the size of the search
space; and

4. only a small percentage (≈ 15%) of bsem image pixels need be used
to approximate the correlation coefficient and this greatly reduces the
time taken to evaluate the distance metric.

The registration runs in less than an hour on 64 cpus and consumes less
than 32Gb of ram when aligning a 40002 bsem image with a 20483 voxel
micro-ct image.

While the results of Section 3 describe alignment of rock sample images,
the algorithm has the potential to be utilised in other areas. Different types
of specimen (biological, medical, etc.) can potentially benefit from the com-
parison of the aligned bsem and micro-ct image pair. Furthermore, with
modification to the distance metric, the technique applies to the registration
of the dry core sample micro-ct 3D image with the micro-ct 3D image of
the same core sample flooded with a contrast agent. Several flooding ex-
periments can be conducted (under varying wettability conditions) and the
subsequent series of registered micro-ct 3D images be used to compare and
analyse the fluid partitioning.

Acknowledgements We thank the Australian Research Council and the
member companies of the Digital Core Laboratory for providing their fund-
ing support and also acknowledge the Australian Partnership for Advanced
Computation for supplying the hpc resources used to produce the registra-
tions presented in this article.



References C547

References

[1] L. G. Brown. A survey of image registration techniques. ACM
Computing Surveys, 24:325–376, 1992.
http://portal.acm.org/citation.cfm?id=146370.146374 C536,
C540

[2] Mark Jenkinson and Stephen Smith. A global optimisation method for
robust affine registration of brain images. Medical Image Analysis,
5:143–156, June 2001. doi:10.1016/S1361-8415(01)00036-6 C536

[3] C. D. Kuglin and D. C. Hines. The phase correlation image alignment
method. In Proc. Int. Conf. on Cybernetics and Society, volume 4,
pages 163–165, 1975. C540

[4] G.S. Padhy, C. Lemaire, E.S. Amirtharaj, and M.A. Ioannidis. Pore size
distribution in multiscale porous media as revealed by DDIF-NMR,
mercury porosimetry and statistical image analysis. Colloids and
Surfaces A: Physicochemical and Engineering Aspects, 300:222–234,
June 2007. doi:10.1016/j.colsurfa.2006.12.039 C535

[5] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T.
Vetterling. Numerical Recipes in C: The Art of Scientific Computing.
Cambridge University Press, 2nd edition, October 1992.
http://www.nrbook.com/a/bookcpdf.php C537, C544
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