• K. Burrage, M. Hegland, S. MacNamara, and R. B. Sidje. A Krylov-based finite state projection algorithm for solving the chemical master equation arising in the discrete modelling of biological systems. In A. N. Langville and W. J. Stewart, editors, 150th Markov Anniversary Meeting, Charleston, SC, USA, pages 21--38. Boson Books, 2006.
  • K. Burrage, T. Tian, and P. Burrage. A multi-scaled approach for simulating chemical reaction systems. Progress in Biophysics and Molecular Biology, 85:217--234, 2004. doi:10.1016/j.pbiomolbio.2004.01.014.
  • D. T. Gillespie. Markov Processes: An Introduction for Physical Scientists. Academic Press, Harcourt Brace Jovanovich, 1992.
  • T. Kato. Perturbation theory for linear operators. Springer--Verlag, 1976.
  • C. Moler and C. Van Loan. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Review, 45(1):3--49, 2003.
  • B. Munsky and M. Khammash. The finite state projection algorithm for the solution of the chemical master equation. J. Chem. Phys., 124:044104, 2006. doi:10.1063/1.2145882.
  • J. R. Norris. Markov chains. Cambridge, 1997.
  • R. B. Sidje. Expokit: A software package for computing matrix exponentials. ACM Transactions on Mathematical Software, 24(1):130--156, 1998.
  • R. B. Sidje and W. J. Stewart. A numerical study of large sparse matrix exponentials arising in {M}arkov chains. Comput. Statist. Data Anal., 29:345 -- 368, 1999. doi:10.1016/S0167-9473(98)00062-0.
  • W. J. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton University Press, 1994.
  • A. Arkin and H. McAdams. It's a noisy business! Genetic regulation at the nanomolar scale. Trends Genet., 15(2):65--69, 1999. doi:10.1016/S0168-9525(98)01659-X.
  • N. G. van Kampen. Stochastic Processes in Physics and Chemistry. Elsevier Science, 2001.
  • R. P. Brent. Reducing the retrieval time of scatter storage techniques. Communications of the ACM, 16(2):105 --109, February 1973. doi:10.1145/361952.361964.
  • R. Bundschuh, F. Hayot, and C. Jayaprakash. The role of dimerization in noise reduction of simple genetic networks. J. Theor. Biol., 220:261--269, 2003. doi:10.1016/j.jtbi.2004.05.013.
  • K. Burrage. Parallel and sequential methods for ordinary differential equations. Oxford University Press, Oxford, 1995.

Remember, for most actions you have to record/upload into this online system
and then inform the editor/author via clicking on an email icon or Completion button.
ANZIAM Journal, ISSN 1446-8735, copyright Australian Mathematical Society.