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Spectral solution methods for free-surface flow:
the Rayleigh–Taylor problem
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Abstract

This article describes two spectral methods for solving problems in
interfacial fluid mechanics. These are illustrated here for the Rayleigh–
Taylor instability, in which a layer of heavy fluid lies above a light
fluid. Disturbances to the interface between them are unstable, and
grow with time. The first spectral method solves time dependent, free-
surface problems in inviscid flow theory. It is capable of following the
development of the interface almost to the time at which the curvature
at the interface becomes infinite, and the inviscid model then ceases to
be valid. A second spectral method is presented, and solves the viscous
Boussinesq equations. It shows that the curvature singularity in the
inviscid model is associated with regions of large vorticity at precisely
these same points on the interface. Consequently, the interface rolls
over at these points, forming delicate overhanging structures, leading
ultimately to mixing of the two fluid layers.
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1 Introduction

Rayleigh–Taylor flow refers to a situation in which two fluid layers lie hor-
izontally, with a heavier fluid above a lighter one. Any disturbance to the
interface between the fluids is therefore expected to be unstable and grow
with time, as the heavier and lighter layers effectively seek to exchange their
positions.

This classical problem was originally formulated by Rayleigh [10] and
developed later by Taylor [11]. Those theories assumed ideal inviscid fluid,
and performed a linearized analysis of the development of the interface profile.
A sinusoidal interfacial wave was shown to grow exponentially with time.
However, after some finite time linearized small amplitude theory ceases to
be valid for a growing profile, and non-linear effects then become important.
For inviscid fluids, it is now known that the growing interface develops a
singularity in curvature within a finite time, following the work of Moore [8],
for a different fluid instability (the Kelvin–Helmholtz instability). A similar
analysis of the critical time for singularity formation in the Rayleigh–Taylor
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instability was presented by Baker, Caflisch and Siegel [1].

It has long been anticipated that the development of a curvature singu-
larity at the interface, in an inviscid model of Rayleigh–Taylor flow, might
be associated with interface roll-up when viscous effects are re-introduced.
Krasny [7] developed a ‘vortex blob’ method in which the fluid interface is
effectively made to have finite width in an otherwise inviscid model, and
showed that, for Kelvin–Helmholtz flow, he could compute spiral waves at
times beyond the critical time at which the curvature singularity was ex-
pected. However, Baker and Pham [2] demonstrated that different vortex
blob methods give rise to different development of the instability, and so the
reliability of these techniques in predicting the precise details of the solution
beyond the critical time remains unclear.

Purely numerical solutions of the Rayleigh–Taylor instability have been
undertaken by several authors, and there is now a large literature on the
phenomenon of interface roll-up. Tryggvason and Unverdi [12], for example,
presented numerical simulations for complex solution geometry, even in three
dimensional flow, and a finite difference solution of the phenomenon in a
model of turbulent flow has been given recently by Ramaprabhu et al. [9].

This article outlines a spectral method for the solution of the Rayleigh–
Taylor problem, for inviscid flow. This method has the advantage that it
reduces the problem to a set of equations only at the interface, and is there-
fore a serious competitor to boundary integral approaches. It has the further
advantage that it involves only the solution of a system of ordinary differ-
ential equations in time for the Fourier coefficients, which can be done very
efficiently. Forbes, Chen and Trenham [5] first presented the technique, and
Forbes and Hocking [6] later studied draining from a tank. As a check, a
different spectral method is outlined for solving the Rayleigh–Taylor prob-
lem in a viscous fluid, under the Boussinesq approximation. The two sets of
results are in close agreement for early times, but the curvature singularity
predicted by inviscid theory is the precise trigger for interface roll-up in the
viscous model, through the formation of regions of high vorticity.
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2 Inviscid Rayleigh–Taylor model

Consider two horizontal fluid layers in a channel of finite height. Each fluid
is subject to the downward acceleration g of gravity. The fluids would be
stationary if the lower layer were heavier, and so it is only buoyancy effects
that drive the unstable flow. This is not the classical Rayleigh–Taylor prob-
lem of Rayleigh [10] and Taylor [11], in which each fluid is of infinite vertical
extent and moves vertically at some constant acceleration, but it is closely
related to it, and is considered here for numerical convenience. The upper
and lower fluids have density ρ2 and ρ1 respectively, and we are interested
in the unstable situation ρ2 > ρ1 . A periodic disturbance of wavelength λ
exists horizontally along the interface.

Dimensionless variables are defined, and will be used from now on. All
lengths are scaled relative to the quantity λ/2π, and the appropriate unit of
time is

√
λ/(2πg). Speeds are measured relative to

√
gλ/(2π). In this new

dimensionless formulation, the horizontal disturbances now have period 2π,
and solutions are determined by three non-dimensional parameters. These
are the fluid density ratio D = ρ2/ρ1 and the depths h2 and h1 of the upper
and lower fluid depths, respectively. The situation is sketched in Figure 1.

The two fluids are assumed to be incompressible and to flow irrotationally.
Consequently, velocity potentials φ2 and φ1 are constructed in fluids 2 and 1,
respectively. The fluid velocity vectors in each layer are then calculated from
the gradients of the potentials, as (uj, vj) = (∂φj/∂x, ∂φj/∂y) in each fluid,
j = 1, 2 . The velocity potentials satisfy Laplace’s equations

∇2φ1 = 0 in − h1 < y < η(x, t),

∇2φ2 = 0 in η(x, t) < y < h2 , (1)

in each fluid layer.

There is no flow normal to the top and bottom walls, and this is expressed
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Figure 1: A sketch of the dimensionless flow configuration for the inviscid
Rayleigh–Taylor problem in finite depth.

by the conditions

v1 = 0 on y = −h1 ,

v2 = 0 on y = h2 . (2)

In addition, neither fluid can cross the interface shown in Figure 1, and this
leads to the two kinematic conditions

vj =
∂η

∂t
+ uj

∂η

∂x
, j = 1, 2 , on y = η(x, t) . (3)

Finally, since Bernoulli’s equation holds as a first integral of the equations
of motion in each fluid layer, imposing the dynamic condition that the fluid
pressures are equal at the interface leads to the requirement

D
∂φ2

∂t
−
∂φ1

∂t
+
1

2
D
(
u22+v

2
2

)
−
1

2

(
u21+v

2
1

)
+(D−1)η = 0 on y = η(x, t) (4)
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in non-dimensional form.

It is evident that the Laplace equations (1) and the conditions (2) are
satisfied at once by velocity potentials having the forms

φ1(x, y, t) = P0(t) +

N∑
n=1

Pn(t) cosh
(
n(y+ h1)

)
cos(nx) ,

φ2(x, y, t) = Q0(t) +

N∑
n=1

Qn(t) cosh
(
n(y− h2)

)
cos(nx) . (5)

The upper index N in these sums represents the number of Fourier modes
taken in the numerical solution, and should be taken as large as practicable.
The time dependent Fourier coefficients in these representations (5) are to
be determined. In fact, the zeroth order terms P0 and Q0 have no effect on
the final velocity components, and we set P0(t) = 0 in the numerical scheme,
and solve only for Q0(t).

The interface y = η(x, t) is now parametrized using the usual arclength s
defined from the relationship ds2 = dx2+dη2. This allows for the possibility
of vertical or overhanging sections in the interface profile. We set s = 0 at
x = 0 , but the arclength has some unknown values s = ±L(t) at the borders
x = ±π of the periodic interval. Accordingly, it is convenient to define a new
scaled arclength ξ as

ξ = πs/L(t) . (6)

This new quantity ξ now takes known values ξ = 0 at x = 0 and ξ = ±π at
x = ±π . The interface is represented in the form

x(ξ, t) = ξ+

N∑
n=1

An(t) sin(nξ) ,

η(ξ, t) = B0(t) +

N∑
n=1

Bn(t) cos(nξ) . (7)
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The time dependent Fourier coefficients in this expression are again to be
determined, along with the interface half-length L(t) in equation (6).

The governing equations are now Fourier decomposed, to yield a system
of equations for the time dependent coefficients. To begin, the arclength
condition (

∂x

∂ξ

)2
+

(
∂η

∂ξ

)2
=
L2(t)

π2
(8)

is integrated over a period, and the usual orthogonality relations for the
trigonometric functions yield the result

L(t) = π

√√√√1+
1

2

N∑
n=1

n2
[
A2n(t) + B2n(t)

]
, (9)

for the unknown interface half-length L(t) in terms of the Fourier coefficients
in equation (7). Following Forbes et al. [5], the arclength equation (8) is now
differentiated with respect to t holding ξ constant, and Fourier decomposed
by multiplying by basis functions cos(jξ), j = 1, . . . ,N , and integrating over
a period. This leads to a system ofN ordinary differential equations involving
coefficients An(t) and Bn(t), n = 1, 2, . . . ,N .

The first kinematic condition in the system (3) is first re-written in para-
metric form, in terms of the scaled arclength ξ in equation (6). It is then
subject to Fourier decomposition as above, by multiplying by basis functions
cos(jξ) and integrating over a period. Integration by parts simplifies the
algebra considerably, and the zeroth order mode yields

B0(t) = −
1

2

N∑
n=1

nAn(t)Bn(t) . (10)

It may be shown that the interface elevation, averaged across a period,
equals B0(t) plus the term on the right hand side of equation (10). As a
result, the average interface height remains zero for all times. The higher
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Fourier modes then lead to a system of N ordinary differential equations
involving the time dependent coefficients in equation (7).

The second kinematic condition in equations (3) is actually replaced by
the difference of the two, and then subject to Fourier decomposition as out-
lined above. It is found that the zeroth mode is satisfied as an identity,
following the use of integration by parts. Higher modes are then obtained by
multiplying by basis functions cos(jξ), j = 1, 2, . . . ,N , and integrating over a
period, as before. The use of integration by parts yields an elegant algebraic
identity between the Fourier coefficients. This leads to a differential algebraic
system of equations for the coefficients. However, this algebraic component
is avoided here simply by differentiating the algebraic identity with respect
to time, giving a pure system of ordinary differential equations. The fact
that such a possibility is available here represents a further advantage of this
spectral approach.

Finally, the dynamic condition (4) is also subjected to similar Fourier
analysis. It is occasionally convenient to add the surface tension term

σκ = σ
ηxx[

1+ η2x
]3/2

to the left-hand side of the equation, in which σ is a dimensionless constant
representing the surface tension parameter and κ is the curvature of the
interface. Surface tension effectively regularizes the interface by penalizing
high curvature, and so smoothes the interface. In terms of the arclength ξ,
the curvature is

κ =
π3

L3(t)

[
xξηξξ − xξξηξ

]
, (11)

in which L(t) is the interface half-length defined in equation (9). Fourier
analysis now yields a system of N + 1 differential equations for the zeroth
and higher order modes.

The arclength equation, the two kinematic conditions and the dynamic
condition give rise to a coupled system of 4N+ 1 ordinary differential equa-
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tions for the time dependent Fourier coefficients in equations (5) and (7).
They are solved here to high accuracy using the classical fourth order Runge–
Kutta scheme, and this has been checked against backward difference schemes.
Good accuracy is obtained with N = 35 Fourier modes in equations (5)
and (7), and larger values of N produce no change. There are integral terms
involved in the Fourier decomposition of the kinematic and dynamic condi-
tions, and these are evaluated using 301 spatial mesh points over one period
of the interface, and the composite trapezoidal rule. Solutions are obtained
in about 20 minutes run time on an Intel Core 2 Duo pentium (2.1 GHz)
computer.

3 Viscous Rayleigh–Taylor model

Here we present a spectral method for solving a simplified model of viscous
flow, for the same problem as in the previous section. We use the Boussinesq
approximation, in which there is only a single fluid, but the density varies
smoothly with height y. The fluid is regarded as weakly compressible, and
the interface is replaced by a narrow region of finite width in which the
density changes rapidly but continuously. This follows the approach taken
by Farrow and Hocking [4].

The fluid velocity components u and v are calculated from a streamfunc-
tion ψ in the form (u, v) = (∂ψ/∂y,−∂ψ/∂x). It is also convenient to define
the vorticity

ζ =
∂v

∂x
−
∂u

∂y
= −∇2ψ , (12)

and then, by cross differentiating the momentum equations to eliminate the
pressure, we obtain the familiar vorticity equation

∂ζ

∂t
+ u

∂ζ

∂x
+ v

∂ζ

∂y
= −

∂ρ̄

∂x
+ β

(
∂2ζ

∂x2
+
∂2ζ

∂y2

)
, (13)
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given by Batchelor [3, page 267]. The quantity ρ̄ is the small perturbation
to the background density in the Boussinesq approximation, and it is trans-
ported according to the continuity equation

∂ρ̄

∂t
+ u

∂ρ̄

∂x
+ v

∂ρ̄

∂y
= γ

(
∂2ρ̄

∂x2
+
∂2ρ̄

∂y2

)
, (14)

in which the parameter γ is a small diffusion coefficient. Similarly, β in
equation (13) is the dimensionless kinematic viscosity.

For a viscous fluid, the no-slip condition would normally be enforced at
the upper and lower horizontal walls. However, since our concern is with the
fluid behaviour near the interface, we simplify the problem by allowing slip at
each wall, following Farrow and Hocking [4], according to the approximations

v = ζ = 0 at y = −h1, h2 . (15)

By periodicity and symmetry, it is also to be expected that u = 0 at x = ±π .
It follows from equations (15) that the appropriate spectral representation
for the streamfunction ψ is

ψ(x, y, t) = −

N∑
n=1

M∑
m=1

Vmn(t) sin

(
mπ(y+ h1)

h2 + h1

)
sin(nx) . (16)

Representations for the velocity components and vorticity are now obtained
from equations (12). The density perturbation is expressed in the spectral
form

ρ̄(x, y, t) = R00 −

M∑
m=1

Rm0(t) sin

(
mπ(y+ h1)

h2 + h1

)

−

N∑
n=1

M∑
m=1

Rmn(t) sin

(
mπ(y+ h1)

h2 + h1

)
cos(nx) . (17)

The vorticity equation (13) and density equation (14) are decomposed
spectrally. This yields a large system of M(1 + 2N) ordinary differential
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equations for the Fourier coefficients Vmn(t) and Rmn(t) in the representa-
tions (16) and (17). These are integrated forward in time using Runge–Kutta
integration. WhenM = N = 25 and a 51×51 spatial grid of points is used in
the xy-plane, the run time is about 20 hours on an Intel Core 2 Duo pentium
(2.1 GHz) computer.

4 Discussion of results

We begin by considering the results of computation with the inviscid spectral
method outlined in Section 2. For definiteness, we consider density ratio
D = 1.05 , an initial cosine wave profile with amplitude ε = 0.03 , and fluid
layer depths h1 = h2 = 1.5 .

Figure 2(a) illustrates the growth of the inviscid interface for a sequence of
times, and the development of the instability can be seen clearly. Eventually
a curvature singularity develops on the interface, and from the asymptotic
estimate given by Baker et al. [1], this singularity occurs at about time t =

22.45 . The results in Figure 2 show that the spectral method is capable
of following the interface almost completely until this critical time. The
curvatures, computed from equation (11), are shown in Figure 2(b).

The corresponding calculation with the Boussinesq viscous model of Sec-
tion 3 at time t = 21 is shown in Figure 3, where it is compared with the
inviscid result of Section 2 at the same time. The black dashed line is the
inviscid interface. Figure 3(a) shows that there is very close agreement be-
tween the two results at this time, so that viscosity is evidently having little
effect on the interface profile. However, Figure 3(b) shows that, although
the vorticity is nearly zero almost everywhere in the fluid, it concentrates at
precisely the two points on the interface at which the inviscid theory predicts
curvature singularities. These regions of high vorticity would be expected to
cause the interface to roll up at these points.
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Figure 2: (a) Interface profiles and (b) Interface curvatures, at the sequence
of times indicated, for the case D = 1.05 , ε = 0.03 , h1 = h2 = 1.5 . The
initial condition was a pure cosine.
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Figure 3: (a) Density contours and (b) Vorticity contours, compared against
the inviscid interface profile (dashed line) at time t = 21 , for the case D =

1.05 , ε = 0.03 , h1 = h2 = 1.5 . The initial condition was a pure cosine.
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Figure 4: Development of the viscous solution at three times (a) t = 28 ,
(b) t = 35 and (c) t = 42 beyond the inviscid critical time, for the case
D = 1.05 , ε = 0.03 , h1 = h2 = 1.5 . Density contours are shown. The
initial condition was a pure cosine.
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Figure 4 confirms that this is indeed what happens in the viscous solution,
for times beyond the critical time at which curvature singularity is predicted
by the inviscid solution. In this sequence of three solutions, the interface
continues to move upwards but also rolls outwards to form an over-hanging
mushroom shaped plume.

This plume is particularly evident in Figure 4(c), at the last time t = 42 .
The plume of lighter fluid moving upwards has developed substantial spiral
portions on the two over-hanging arms. In addition, the base has detached
altogether at the bottom of the picture, and then moves upwards as time
increases.

As the flow is unstable, its development is strongly affected by the choice
of initial conditions. An alternative starting interface shape is considered
briefly here, and has the periodic partial cosine form

η(x, 0) =

{
ε cos(x/q) for 0 < x < qπ

−ε for qπ < x < π .
(18)

In this expression (18), the constant q takes values 0 < q < 1 , and the
function and its first derivative are continuous at points x = ±qπ .

An inviscid solution is illustrated in Figure 5, for the partial cosine pro-
file (18) with parameter q = 0.5 . Figure 5(a) shows the growth of the
interface profile, and it is clear from Figure 5(b) that there are four points
along the interface at which the curvature becomes large. Consequently, it
is to be expected that the viscous solution should show the interface curling
up at these four points.

This is confirmed in Figure 6 in which two viscous solutions are shown
at times t = 21 and t = 28 . For the profile in Figure 6(a) at time t = 21 ,
the interface has clearly begun to overturn at the four points at which the
curvature in Figure 5(b) is large. The viscous solution in Figure 6(b) at
the later time t = 28 shows the rolling up of the interface continuing. The
downwardly moving portions of heavier fluid at the bottom of the picture
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Figure 5: (a) Interface profiles and (b) Interface curvatures, at the sequence
of times indicated, for the partial cosine initial profile. Here, D = 1.05 ,
ε = 0.03 , h1 = h2 = 1.5 , q = 0.5 and σ = 2× 10−4.
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Figure 6: The viscous solution, for the partial cosine initial profile, at times
(a) t = 21 and (b) t = 28 , for the case D = 1.05 , ε = 0.03 , h1 = h2 = 1.5 .
Density contours are shown.
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have developed significant spiral portions, and the upwardly moving plume of
lighter fluid at the centre of the diagram exhibits an over-hanging mushroom
shaped profile.

5 Conclusion

Spectral methods for some time dependent free-surface problems in inviscid
hydrodynamics are at least as efficient computationally as boundary integral
methods. They allow Laplace’s equation in the fluid to be satisfied identically,
and the entire computational effort to focus solely on the interface itself. The
evolution of the surface is followed accurately using Runge–Kutta integration
to solve differential equations for the Fourier coefficients.

We illustrated this technique in the demanding situation of modelling un-
stable Rayleigh–Taylor flow. The method is capable of following the interface
right up to the critical time at which a curvature singularity forms. These
inviscid results have been compared with spectral solutions of a Boussinesq
approximation for viscous flow, and the results have been shown to be in
close agreement for early times. The inviscid curvature singularity triggers a
local concentration of vorticity, which causes the interface to over-turn, and
form over-hanging portions with spiral structures.
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