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Numerical solution of the two-phase tumour
growth model with moving boundary
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Abstract

A novel numerical technique is proposed to solve a two-phase tumour
growth model in one spatial dimension without needing to account for
the boundary dynamics explicitly. The equivalence to the standard
definition of a weak solution is proved. The method is tested against
equations with analytically known solutions, to illustrate the advantages
over existing techniques. The tumour growth model is solved using the
new procedure and is shown to be consistent with results available in
the literature.
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1 Introduction

We consider the tumour growth model presented in the seminal paper by
Breward et al. [2]. The partial differential equations are defined in a time-
dependent one-dimensional spatial domain. Such systems generally account
for higher spatial dimensional models reduced to a single spatial dimension
by symmetry arguments [3]. In the current model, tumour cells and the
surrounding fluid medium are considered as two distinct, actively interacting
phases. The cell phase is viscous with viscosity µ, and the fluid phase is
inviscid.

Let Ω(t) = (0, `(t)) be the interval representing the tumour where `(t) is
the tumour radius at time t. Define the space-time domain of the tu-
mour DT := ∪0<t<T {t} × Ω(t) and the time-dependent boundary BT :=
∂DT\ ({T }×Ω(T) ∪ {0}×Ω(0) ∪ [0, T ]× {0}) (Figure 1). The surface BT is
the space-time bounding surface of tumour, except for the top, bottom and
left boundaries which are time-independent, and BT is assumed to be of
class C1 [4, p. 627].

The model seeks the variables α, uc and C that denote volume fraction of the
tumour cells, velocity of the tumour cells and oxygen tension, respectively,
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Figure 1: The rectangle (0, T) × (0,L) is the time-independent domain D.
The region to the left of the red curve BT is the domain of the tumour DT

and to the right of curve BT is D\DT .
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such that the following hold in DT :

∂α

∂t
+
∂

∂x
(ucα) = αf(α,C) , (1a)

kucα

1− α
− µ

∂

∂x

(
α
∂uc

∂x

)
= −

∂

∂x

[
α
α− α∗

(1− α)2
H(α− αmin)

]
, (1b)

∂C

∂t
−
∂2C

∂x2
= −

QαC

1+ Q̂1C
, (1c)

where
f(α,C) =

(1+ s1)(1− α)C

1+ s1C
−
s2 + s3C

1+ s4C
.

The positive, constant drag coefficient k controls the drag between the phases.
The constants α∗ and αmin are positive and control the stress in the cell
phase. The positive constant s1 controls the cell birth rate, while the positive
constants s2, s3 and s4 control the cell death rate. The Heaviside function
H(x) = 1 if x > 0 and zero otherwise. The non-negative constants Q and Q̂1

control the oxygen consumption rate of the tumour cells. The two-phase model
of Breward et al. [2] uses a quasi-steady state assumption for oxygen tension
which is relaxed in this study. This means the explicit temporal variation of
oxygen tension is considered which makes (1c) a parabolic equation.

The initial and boundary conditions are

α(0, x) = α0(x) and C(0, x) = C0(x) for all x ∈ Ω(0) , (1d)

uc(t, 0) = 0 , µ
∂uc

(
t, `(t)

)
∂x

=
α
(
t, `(t)

)
− αmin[

1− α
(
t, `(t)

)]2H [
α
(
t, `(t)

)
− αmin

]
,

(1e)
∂C(t, 0)
∂x

= 0 and C
(
t, `(t)

)
= 1 for all t ∈ (0, T) , (1f)

` ′(t) = uc
(
t, `(t)

)
for all t , `(0) = `0 . (1g)

Here, we assume that α0(x) satisfies 0 < mα 6 α0(x) 6 Mα < 1 for every
x ∈ Ω(0) where mα and Mα are constants.
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The standard method for solving the system (1a)-(1g) is to transform the
domain Ω(t) into a fixed interval using a suitable change of variables [1,
7, 8]. An inverse transform is then applied to obtain the solution in the
moving domain. Even though this method is commonly adopted, it comes
with significant drawbacks. Firstly, the change of variable is computable only
when the geometry of the problem is simple enough. This is even harder in
2D and 3D domains. Secondly, for the clear choice of x→ ξ := x/`(t) in the
1D case, the discretisation error is proportional to `(t)∆ξ . An alternative
choice is to discretise

(
0, `(t)

)
and apply a numerical scheme. In this method

re-meshing is required at each time step, which may become computationally
expensive.

This article introduces a new numerical technique that overcomes theses
disadvantages. This novel method, referred to as extended model, presents so-
lutions on a larger domain that contains all the time-dependent domains Ω(t)
for a finite time. This domain, referred to as the extended domain, is time-
independent and requires only one initial spatial discretisation, thereby avoid-
ing the need to re-mesh. Also, the discretisation error becomes independent
of `(t).

Section 2 introduces the extended model and proves its equivalence to the
standard model. Section 3 applies the new numerical technique to a simplified
version of extended model and the results are compared with the known exact
solution. The effect of parameters in the new method is also investigated.
The extended model is solved using the numerical technique developed and
compared with results available from the literature.

2 Extended model

This section introduces weak solutions in both the given domain and the
extended domain. The solutions for the extended and original domains are
proved to be equivalent. For p ∈ [1,∞] and a family of domains {Ω(t)}06t6T ,
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define

Lp
(
0, T ;H1

(
Ω(t)

))
:=
{
v : [0, T ]× R→ R | v(·, t) ∈ H1

(
Ω(t)

)
;

∀t ∈ [0, T ] ,
∥∥‖v(·, t)‖H1

∥∥
Lp(0,T) <∞} .

Multiply (1a) by a test function φ ∈ C∞
c

(
D̄T\ [{T }×Ω(T)]

)
and apply inte-

gration by parts. With ∇t,x := (∂t,∂x) , applying (1g) and (1d) yields∫
DT

[αf(α,C)φ+ (α,ucα) · ∇t,xφ]dtdx+
∫
Ω(0)

φ(0, x)α0(x)dx = 0 . (2)

This constitutes the weak formulation of the hyperbolic conservation law.
The weak solutions in the extended and original domains are defined below.
Firstly, we give the definition of the solution in the domain DT .

Definition 1 (weak solution I). A weak solution of the system (1) in DT is
a four-tuple (α,uc,C,Ω) such that 0 < m̄α 6 α 6 M̄α < 1 where m̄α 6 mα

and Mα 6 M̄α are time-independent constants, C > 0 and

1. α ∈ L∞(DT) satisfies (2) for every φ ∈ C∞
c

(
D̄T\ [{T }×Ω(T)]

)
;

2. uc ∈ L∞(
0, T ;H1

(
Ω(t)

))
with uc|x=0 = 0 and C ∈ L2

(
0, T ;H1

(
Ω(t)

))
with C|x=`(t) = 1 are solutions of (1b) and (1c) in the sense of distri-
butions;

3. the domain Ω(t) is the open interval (0, `(t)) where `(t) is governed
by (1g).

Secondly, we give the definition of the weak solution in the extended domain
D = (0, T)× (0,L) (Figure 1) where L is chosen such that `(t) < L for every
t 6 T .
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Definition 2 (weak solution II). A weak solution of the system (1) in the
extended domain D (Figure 1) is a four-tuple (α̃, ũc, C̃, Ω̃) such that 0 <
m̄α 6 α̃|Ω̃ 6 M̄α < 1 , C̃ > 0 and

1. α̃ ∈ L∞(D) such that for every φ̃ ∈ C∞
c

(
[0, T)× (0,L)

)
:∫

D

[
α̃f(α̃, C̃)φ̃+ (α̃, ũcα̃) · ∇t,xφ̃

]
dtdx+

∫
Ω(0)

φ̃(0, x)α0(x)dx = 0 ;

(3)

2. for a fixed t, Ω̃(t) := {x : α̃(t, x) > 0} , ũc = 0 , C̃ = 1 on (0,L)\Ω̃(t) .
Define D̃T := ∪0<t<T {t}× Ω̃(t) ;

3. ũc ∈ L∞(D) with uc := ũc|D̃T
, uc ∈ L∞(

0, T ;H1
(
Ω̃(t))

))
and, C̃ ∈

L2(D) such that C := C̃
∣∣
D̃T
∈ L2

(
0, T ;H1

(
Ω̃(t)

))
are solutions of (1b)

and (1c) in the sense of distributions.

Theorem 3. If (α,uc,C,Ω) is a weak solution I, then (α̃, ũc, C̃, Ω̃) defined
by α̃ := α , ũc := uc and C̃ := C in DT and, α̃ := 0 , ũc := 0 , C̃ := 1 in D\DT

with Ω̃(t) := Ω(t) is a weak solution II. Conversely, if (α̃, ũc, C̃, Ω̃) is a weak
solution II, then (α,uc,C,Ω) with Ω = Ω̃ and α := α̃|D̃T

, uc := ũc|D̃T
and

C := C̃
∣∣
D̃T

is a weak solution I.

Proof: Let (α,uc,C,Ω) be a weak solution I and φ̃ ∈ C∞
c

(
[0, T)× (0,L)

)
.

Since φ̃
∣∣
DT
∈ C∞

c

(
D̄T\

(
{T } × Ω(T)

))
, (2) holds true. Let α̃ = α in DT

and α̃ = 0 in D\DT . Then applying the definitions of ũc and C̃ from the
statement of Theorem 3 yields∫

DT

(
α̃f(α̃, C̃)φ̃+ (α̃, ũcα̃) · ∇t,xφ̃

)
dtdx+

∫
Ω(0)

φ̃(0, x)α0(x)dx = 0 , (4)∫
D\DT

(α̃, ũcα̃) · ∇t,xφ̃ dtdx+
∫
D\DT

α̃f(α̃, C̃)φ̃ dtdx = 0 . (5)
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Add (4) and (5) to obtain∫
D

(
α̃f(α̃, C̃)φ̃+ (α̃, ũcα̃) · ∇t,xφ̃

)
dtdx+

∫
Ω(0)

φ̃(0, x)α0(x)dx = 0 . (6)

Therefore (3) holds true. The conditions on ũc and C̃ follow naturally from
Definition 2. Since α̃ > 0 in DT and α̃ = 0 in D\DT , Ω̃(t) = Ω(t) for every
t ∈ [0, T) . Therefore (α̃, ũc, C̃, Ω̃) is a weak solution II.

Conversely, assume that (α̃, ũc, C̃, Ω̃) is a weak solution II and let φ ∈
C∞
c

(
D̄T\

(
{T } × Ω(T)

))
. Define φ̃ ∈ C∞

c

(
[0, T) × (0,L)

)
such that φ̃ = φ

in DT . Since Ω(t) = Ω̃(t) for every t, α̃ = 0 in D\DT , and using this in (3)
we obtain (2). We now recover (1g). For this, define a vector field F : D→ R2
by F(t, x) := (α̃, ũcα̃) . We set F|B+T = F|DT

∣∣
BT

and F|B−T = F|D\DT

∣∣
BT

. Since
the weak divergence of the vector field F is −α̃f(α̃, C̃) ∈ L2(D) , the flux
of F is continuous across BT . Since α̃ = 0 in D\DT , F|B−T = 0 . Therefore,(
F|B+T − F|B−T

)
·nBT = (α,ucα) ·nBT = 0 where nBT is the normal to BT given

by
(
|` ′(t)|2 + 1

)−1/2(
− ` ′(t), 1

)
. This gives (α,ucα) · nBT = 0 . Since α > 0 ,

` ′(t) = uc
(
t, `(t)

)
. The conditions on uc and C follows directly from the

definitions. Therefore (α,uc,C,Ω) is a weak solution I.

This completes the proof of the equivalence between the solutions. ♠

3 Numerical experiments

By Theorem 3, solving (1a) in the extended domain (0,L) and then taking
its restriction, as in the statement of Theorem 3, gives the solution in the
domain DT . Equation (1a) is solved using cell-centred finite volume methods.
In particular, we use two methods to solve the volume fraction equation:
upwinding with Godunov flux [5, p. 135] (method U), and (monotonic upwind
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scheme for conservation laws) with Godunov flux [5, p. 146] (method M).
The uniform space and time discretisations are 0 = x0 < x1 < · · · < xi <
· · · < xM = L , 0 = t0 < t2 < · · · < tj < · · · < tN = T with h = xi+1 − xi
and ∆t = tj+1 − tj . The right hand side boundary `(t) is approximated by
`h(t) = minx{x : α̃ < αthr on (x,L)} where threshold αthr is a small positive
number. Define α̃ := 0 for x > `h(t) to eliminate the error caused by small
positive values of α̃ (created by numerical diffusion). Equations (1b) and (1c)
are solved using a conforming P1 finite element method (fem) in space and
forward finite difference in time, in the reconstructed domain

(
0, `h(t)

)
. This

procedure, named scheme A, is outlined below.

1. Start at t0 = 0 . Solve ũ0c,h using α̃0h (initial condition).

For j = 1 to N, tj = tj−1 + ∆t :

2. `jh = min
xi

{xi : α̃
j−1
h < αthr on (xi,L)} ;

3. find ũjc,h and C̃jh in (0, `jh) (P1 conforming fem);

4. extrapolate ũjc,h = 0 and C̃jh = 1 to (`jh,L) ;

5. find α̃jh in (0,L) (using method U or M).

The major advantages of scheme A are the complete elimination of re-meshing
and applicability in higher dimensions. Scheme B denotes the procedure of
obtaining a numerical solution in the scaled domain (0, 1) [2]. Two test cases
are considered in the numerical experiments.

In the first test case (Section 3.1), the cell velocity uc and the oxygen
tension C are assumed to be unity. In this case (1a) reduces to a semi-
linear advection equation which is solved analytically by the method of
characteristics. Figure 2 compares the analytical solution with the numerical
solutions. We also study the influence of αthr on locating the tumour frontier.
In the second case (Section 3.2), we compare the approximate solutions of
the full system (1a)–(1g).
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In all numerical tests, to preserve conformity with Breward et al. [2], the
parameters are set to s1 = 10 = s4 , s2 = 0.5 = s3 , k = 1 = µ , Q = 0.5 ,
Q̂1 = 0 and `(0) = 1 .

3.1 Case 1

The analytical solution to (1a) in the case where C = uc = 1 is

α(t, x) =
(c2 − c1)α0(x− t) exp[(c1 − c2)t]

c1α0(x− t]
(
1− exp[(c1 − c2)t]

)
+ c2 − c1

, (7)

where c1 = 1 and c2 = (s2 + s3)/(1 + s4) . The tested initial data α(0, t) =
α0(x) are:

(i) α0(x) = 0.5(0.02+ cos2 x)χ[0,1] ;

(ii) α0(x) = 0.5(0.02+ sin2 x)χ[0,1] ;

(iii) α0(x) =
χ[0,1]

2

1+ exp[(x− 0.5)2]
1+ exp[2(x− 0.5)2]

;

where χ[0,1] = 1 in [0, 1] and 0 otherwise. Here, T = 5 , L = 6 , ∆t = 0.01
and ∆x = 0.02 , and the threshold is αthr = 0.04 (method U) or αthr =
0.004 (method M). The second order method muscl significantly reduces
the numerical diffusion (smoothening of numerical solutions at the points
of discontinuity) [6]. The reduction of the numerical diffusion in method M
compared to method U explains the reduction in the threshold value.

Figure 2 shows that the approximate solution obtained in the extended
domain (scheme A) captures the properties of the analytical solution better
than the one obtained in the scaled domain (scheme B), although it is less
accurate towards the discontinuity at `Nh in method U owing to the high
diffusion. But method M overcomes this disadvantage; the extended solution
agrees well with the scaled solution towards the discontinuity, and remarkably
better in the interior region. The recovered radius `jh is in excellent agreement
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Figure 2: Numerical solutions for case 1 using (top) method U and (bot-
tom) method M with initial data α0(x): (left) (i); (middle) (ii); and (right) (iii).
In each plot, the red line is scheme A, the blue line is scheme B, and the
green line is the analytical solution.

with the exact radius for both methods M and U with a suitable choice of
threshold value (Tables 1 and 2).

We conclude this section by analysing the dependency of the recovered
radius `jh on the threshold value αthr for the muscl method. The relative
error ∆`h = |`(T) − `Nh |/`(T) at T = 5 is used as a quantification of the error
in the recovered radius. Two sets of experiments are conducted: (a) vary αthr

with a fixed ∆x; (b) vary ∆x with a fixed αthr. Table 1 shows that there
exists a wide range of αthr and ∆x for which the error remains below 1× 10−2.
This low error assures the accuracy of the method while the selection of αthr

remains a pertinent problem. Table 2 shows that for method U the ranges of
αthr and ∆x over which the error remains low are small, which is expected
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Table 1: ∆`h for case 1, method M.

∆x
αthr

0.010 0.008 0.006 0.004 0.002
0.01 1.67× 10−3 1.67× 10−3 1.67× 10−3 1.67× 10−3 5.00× 10−3
0.02 3.33× 10−3 3.33× 10−3 6.67× 10−3 1.33× 10−3 2.00× 10−3
0.04 6.67× 10−3 6.67× 10−3 2.00× 10−2 2.67× 10−2 4.00× 10−2
0.06 4.31× 10−2 1.58× 10−2 2.59× 10−2 4.60× 10−2 6.61× 10−2
0.08 2.10× 10−2 7.66× 10−3 1.92× 10−2 3.26× 10−2 5.93× 10−2
0.10 3.33× 10−2 1.67× 10−2 1.67× 10−2 5.00× 10−2 8.33× 10−2

Table 2: ∆`h for case 1, method U.

∆x
αthr

0.04 0.03 0.02 0.01
0.01 3.33× 10−3 3.33× 10−3 1.66× 10−2 3.83× 10−2
0.02 3.33× 10−2 3.33× 10−3 1.33× 10−2 5.68× 10−2
0.04 1.20× 10−1 7.33× 10−2 6.66× 10−3 6.00× 10−2

considering the high numerical diffusion associated with this method.

3.2 Case 2

The two phase model with all the system variables treated as unknowns is
now considered. The parameters are ∆t = 0.01 , ∆x = 0.01 , T = 228 and
L = 25 , with αthr = 0.004 (method M) and αthr = 0.01 (method U) based
on Tables 1 and 2. The initial condition is α0(x) = 0.8 for 0 6 x 6 1 and
α0(x) = 0 otherwise. Since the exact value of `(T) is not available, the error
is quantified as the relative difference between scheme B and scheme A. The
difference for method U is 6.18 × 10−3 and for method M is 5.69 × 10−3 .
Hence the moving boundary ` is well captured by both methods U and M.
Figure 3 shows that the numerical solution in the extended domain is in good
agreement with the solution obtained from the scaled domain [2].
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Figure 3: Numerical solutions for case 2 using (top) method U and (bot-
tom) method M. The solid lines represent scheme A and the dotted lines
represent scheme B. Each plot shows the variation of the corresponding vari-
able: (left) α; (middle) uc; and (right) C; with respect to space x at the fixed
times t = 25, 50, . . . , 225. The fixed times t are distinguished by the coloured
lines identified in the legend.

4 Conclusion

A novel numerical technique is developed to solve the two phase tumour
growth problem and is tested against problems for which analytical solutions
are known. For a fixed spatial mesh size the new method gives more accurate
solutions than the standard method of solving in a scaled domain. The
moving boundary is recovered from the numerical solution by comparing
with a threshold value. It is found that an appreciable range of threshold
values can be used along with higher order methods like muscl so that the
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error in the recovered radius can be kept low. The solutions obtained from
this new technique show very good agreement with solutions obtained using
standard methods. The reliability of this new method should be beneficial
when extending the method to tumour growth problems in higher dimensions
while not solving for the boundary explicitly.
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