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Modelling parasite density in ruminants
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Abstract

Models of parasite density in ruminants usually involve three non-
linear, coupled, ordinary differential equations for larval density, adult
parasite density and host resistance. We deal with the inverse prob-
lem of objectively determining the nonlinear coefficients within the
equations using available data. Experiments are suggested to allow
efficient calculation of these coefficients. An alternative model is also
proposed which reproduces key features of experimental results and
shows the importance of including time delay equations in parasite
modelling.
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1 Introduction

Most ruminants, such as cattle and sheep, are infected by nematode parasites.
Farmed ruminants tend to be kept at relatively high density and, despite
stock rotation, the development of resistance to the parasite and chemical
treatment, the parasite population density can be considerable. Wild pop-
ulations tend to graze at lower density and range over a much larger area,
so parasite population density is manageable. Understanding the parasite
population dynamics leads to improvements in animal health and farm pro-
ductivity.

Nematode parasites of ruminants have both a free living stage on pasture
and a parasitic stage in the host. The larvae are ingested by the host where
they develop into adults. The adults lay eggs that are deposited onto the
pasture with the faeces in which the larvae develop. The parasites elicit an
immune response from the host that affects parasite establishment, viability
and parasite fertility. Roberts and Grenfell [6] proposed a model describing
the larval population, L (number per unit area), the population of adults, A
(number per unit area), and a generic immune response of the host, R:

dL

dt
= − (β+ ρ)L+ X1(R)A , (1)

dA

dt
= βX2(R)L− X3(R)A , (2)

dR

dt
= βL− σR . (3)
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The rate at which larvae disappear from the pasture is determined by the
rate at which they are ingested by the host, β, or die while on the pasture, ρ,
and they appear at a rate, X1(R), that is often modelled as the product of
the fertility of the adult parasites, λ, and the probability that an egg will
develop into a larva, q(R). The rate at which adults appear in the host
depends on the probability that an ingested larva becomes established in the
host, X2(R), and adults die in the host, X3(R). Host resistance to parasites
increases as more larvae are ingested [1], R ′ = βL , but decays with time if
the host is not exposed to larvae, R ′ = −σR . Note that some models of
parasite populations incorporate a stocking rate, H, and use a density as
number of larvae or adults per host [5]. However, since we do not study the
effect of stocking rate, we analyse here the original formulation of the model
by Roberts and Grenfell [6].

The effect of the host immune response on parasite establishment, X2, fer-
tility, X1, and viability, X3, is modelled by unknown functions that depend
on R. While the model (1)–(3) captures many of the features of the dynamics
of the biology, various arbitrary expressions have been used to model these
coefficients depending on R. For example, some authors assumed X2 to be
constant [6], whereas others employed an exponential function of R [4, 5].
Similarly, X3 has been taken to be constant [4, 6] or a ‘sigmoidal’ function
of R [5]. It is expected that different parasites give rise to different func-
tions Xi; however, one generic model with variable parameters also models a
wide variety of parasites. The aim of this article is to find the functions Xi

without a priori assuming a particular mathematical form.

Here we address the inverse problem of determining the form of these func-
tions Xi, from the available experimental data. It is beyond the scope of this
article to analyse experimental data in any depth. Our goal is to demon-
strate techniques that can be used to find these coefficients, and hence guide
experimentalists to what data are required and provide a method to test the
viability of this model.
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2 Solution method

The goal here is to estimate X1(R), X2(R) and X3(R) from experimental
data A(t) and L(t). The values of β, ρ and σ are not known, but could
be estimated indirectly from a range of experimental data [4, 5] or directly
by nonlinear regression. In general, R(t) is not known; however, one can
estimate it from Equation (3).

In many experiments, parasite-naive animals are introduced to an area con-
taminated with larvae, hence R(0) = A(0) = 0 while L(0) > 0 . Since σ is
small [4, 5, 6] Equation (3) gives

R(t) ≈ β
∫ t

0

L(τ)dτ (4)

with R(t) monotically increasing. Whilst it is not necessary to make σ = 0

to find R, as it can be found exactly from Equation (3), σ is indeed small
enough to be ignored over the time scales of one year studied here. The
crucial aspect in calculating R(t) is that it is monotonic for small σ over the
experimental period.

A single set of experimental data is insufficient to determine all the Xi func-
tions accurately. For example, for one experiment Equation (2) will have
known terms dA

dt
, A(t), β and L(t) and unknowns X2(R(t)) and X3(R(t)).

This is ill-posed since, for example, setting X3 = 0 still gives a mathemat-
ically feasible solution for X2, albeit an incorrect one. The system is still
ill-posed if the behaviour of the Xi is restricted to physically realistic forms.
Hence, two experiments are required to find an acceptable solution.

We assume two separate experiments, both with regions of monotonic R(t),
resulting in known data L1(t1), A1(t1), L2(t2) and A2(t2) at different times t1
and t2. That is, two different experiments are to be compared, with para-
site variables monitored in both. These are then compared at times where
the value of R(t) was the same in both experiments. With σ ≈ 0, then
Equation (4) estimates R with reasonable accuracy to give R1(t1) and R2(t2).
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Equation (2) is then written as

dA1

dt

∣∣∣∣
t=t1

= X2(R1(t1))βL1(t1) − X3(R1(t1))A1(t1) (5)

dA2

dt

∣∣∣∣
t=t2

= X2(R2(t2))βL2(t2) − X3(R2(t2))A2(t2) . (6)

The system is simplified by choosing t1 and t2 such that R1(t1) = R2(t2) = R

giving two equations in two unknowns X2(R) and X3(R)[
X2(R)

X3(R)

]
=

[
βL1(t1) −A1(t1)

βL2(t2) −A2(t2)

]−1
[

dA1

dt

∣∣
t=t1

dA2

dt

∣∣
t=t2

]
. (7)

This solution is repeated for each value of R to generate the functional form
for X2(R) and X3(R). The same process repeated on Equation (1) finds
ρ and X1(t).

Thus we are not attempting to design experiments which give the same
R(t) values. Instead we are exploiting the monotonic increase of R(t) to be
able to numerically choose times in both experiments where R1(t1) = R2(t2).
In doing so the equations are simplified and the coefficients found for this one
value of R. The derivative dA/dt is calculated by first fitting a regression
curve through the A(t) data. Once this smooth curve is obtained, differ-
entiation is done numerically by simple central differencing or by analytic
differentiation of the functional form.

3 Testing

This method was tested using a numerical experiment by assuming known
functional forms [5, 6] for Xi

X1 = 13797 exp(−R× 10−6) , (8)
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X2 = 0.1278 exp(−7.5× 10−6R) , (9)

X3 = 12+ 13
[
1− exp(−R/551090)

]
. (10)

These functional forms were used to generate numerical experimental results
for L(t), A(t) and R(t) under the two different experimental conditions of
A(0) = 0 and L(0) > 0 , or A(0) > 0 and L(0) = 0 . The matlab differential
equation solver, dsolve, was used and results checked against a separate
Euler time step method, hence giving us confidence in the numerical accuracy
of the result. The Euler time step was additionally checked for appropriate
convergence and O(dt) accuracy.

Using these numerically generated results our goal was to use Equation (7)
to re-generate Xi(R), comparing these with the original assumed forms.

Figure 1 shows the scaled solutions L(t), A(t) and R(t) for both numerical
experiments. The first uses an initial condition L(0) = 40000 larvae per unit
area, A(0) = R(0) = 0 and corresponds to an experiment in which parasite-
naive animals graze contaminated pasture. The second uses L(0) = 0 and
A(0) = 4000 adults per unit area, and R(0) = 0 , perhaps corresponding to
a situation in which animals are housed over a long winter during which the
larvae on the pasture die yet sufficient adult parasites survive [8].

The solutions are scaled for clarity by the relative maxima of the functions:
4698312, 4148 and 619852 for L, A and R, respectively, in the left panel;
and by 6774139, 6462 and 772057 in the right panel. For these simulations
ρ = 7 , σ = 0.01 and β = 0.365 [6].

Figure 2 shows the three functions X1(R), X2(R) and X3(R) in the original
form from Equations (8)–(10), scaled by 13797, 0.12775 and 21.7973 respec-
tively, and the regenerated forms using the procedure above at 20 values of R.
Also shown is the constant ρ in both the original estimate of ρ = 7 and the
regenerated value. This has been scaled by 14 for convenience. The results
indicate a good fit with the assumed forms for Xi(R), although care must be
taken near R = 0 since the inversion in Equation (7) is then ill-conditioned.
We also tested using two other initial conditions namely L(0) = 40000 and
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Figure 1: Scaled solutions L(t), A(t) and R(t) to Equations (1)–(3) using
Equations (8)–(10). Initial conditions are all zero except in the left panel
L(0) = 40000 while in the right panel A(0) = 4000 .

L(0) = 400 and found that poor results were obtained, because Equation (7)
is then ill-conditioned. That is, while two experiments are needed to be
held under similar enough conditions for them to be testing the same thing,
the experiments must be different enough that the equations are not ill-
conditioned. This is a challenge to experimentalists. We note that if ρ is
estimated by other means then X1(R) is easily found using one experiment
and Equation (1).

Typical results from 1974 experiments [10, Figures 1 and 2] on Ostertagia
circumcincta and Trichostrongylus are shown in Figures 3 and 4 along with
approximate functional forms for L

L(t) = l0 +
lmaxb

2

b2 + (t− tl)
2

(11)

and similarly for A(t). While these approximations do not capture all of the
details in the data, they do represent reasonable heuristic fits, capturing the
essential elements of both sets of data. The derivatives dA/dt and dL/dt
are taken from the analytic derivatives of Equation (11).
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Figure 2: Regenerating X1(R), X2(R) and X3(R) at 20 points, scaled re-
spectively by 13797, 0.12775 and 21.7973 . The original assumed forms are
shown as the continuous curves. The value of ρ = 7 is also shown scaled
by 14 for convenience.



3 Testing C704

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time [years]

sc
al

ed
 A

 L
 

 

 

L data

A data

L fit

A fit

Figure 3: The population of Ostertagia circumcincta larvae (circles) and
adults (squares) taken from a 1974 study [10]. The curves are fits to the
data of arbitrary functions (11): l0 = 58.98 , lmax = 1124 , b = 0.0313 ,
t1 = 0.640 , a0 = 656 , amax = 12040 , b = 0.0492 , and ta = 0.641 .
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Figure 4: The population of Trichostrongylus larvae (circles) and adults
(squares) taken from a 1974 study [10]. The curves are fits to the data of
arbitrary functions (11): l0 = 57.7 , lmax = 1125 , b = 0.032 , t1 = 0.638 ,
a0 = 738 , amax = 12390 , d = 0.045 , and ta = 0.683 .
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Figure 5: Calculations of Xi(R) using Equation (7) based on the parametric
fits shown in Figure 3 based on experimental data [10].

When using these data, along with similar experimental data [10] we ob-
tained non-physical results for X1(R), X2(R), X3(R) and ρ. That is, while
our method gave mathematical results for Xi they were not physically mean-
ingful, becoming negative and varying considerably with R. Figure 5 shows
typical results, with ρ, X1, X2 and X3 scaled by 31, 0.2606, 998 and 16 re-
spectively. The wild oscillations for small R are due to ill-conditioning when
experimental data are poor at small time. The failure to find Xi(R) for this
set of experiments has several rationalisations: the experiments may be too
similar causing ill-conditioning; as the experiments were run in consecutive
years, the physical conditions might not have been similar enough for the ex-
periments to be compared; or the model presented here, Equations (1)–(3),
is not an accurate reflection of the parasite-host interaction.
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These results indicate the difficulty of designing experiments which allow the
functions Xi(R) to be found. To avoid ill-conditioning it is required that
A(0) = 0 and L(0) > 0 in one experiment, and A(0) > 0 and L(0) = 0

in a second. Initially, such experiments require parasite-naive animals and
parasite-free pasture. Half of the animals should be infected with larvae and
the remainder maintained free of parasites, and all the animals housed until
eggs appear in the faeces of the infected animals indicating the presence of
adult parasites in those animals. One half of the parasite-free pasture should
be infected with parasites (ideally using larvae from the same source as those
used to infect the animals) and the other half should be maintained free
of parasites. The infected animals should then be grazed on the parasite-
free pasture (A(0) > 0 , L(0) = 0) and the parasite-naive animals should
be grazed on the infected pasture (A(0) = 0 , L(0) > 0). The populations
of adults and larvae should then be monitored for each experiment and our
solution method used to find Xi(R). If, in this circumstance, the functions
cannot be found, then there is cause to reconsider the viability of this par-
ticular model. Hence the next section describes an alternative model which
mimics some of the behaviour of parasite host interactions.

4 An alternative model

We demonstrate here an alternative model of the parasite lifecycle. We hy-
pothesize that the larval density L(t) and adult density A(t) are governed
by two sets of delay differential equations. When the adult density is smaller
than some critical adult density, A∗, then

dL

dt
= −X0L+ X1A(t− τ1) , (12)

dA

dt
= X2L(t− τ2) − X3A , (13)

where X0 = β + ρ, X1, . . . , X3 represent the same coefficients as in earlier
equations, τ1 and τ2 represent the delay in larvae becoming egg-producing
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adults, and for eggs to become develop into larvae. These delays are of the
order of 30 days and 10 days, respectively [3] which although relatively small
on the order of a year, prove quite crucial on the time scales of the parasite
peak. The coefficients Xi are considered constant during this growth phase
(when A < A∗). However, when there are sufficient adult parasites (A ≥ A∗),
host resistance eliminates parasite egg production and the development of
larvae to adults. Hence for A > A∗ the system moves towards

dL

dt
= −Y0L , (14)

dA

dt
= −Y3A , (15)

for some Y0 ≈ X0 and Y3. This second set of equations simply demonstrates
the exponential decay of larval and adult density apparent after the peak in
the data. This model reduces to the earlier model if τ1 and τ2 are taken
as zero and the dependence on resistance modified so that R ∝ A . This
step function approach without time delays has been used by Roberts and
Heesterbeek (1998) [7] although they applied the step function to a nor-
malised version of Q(R) = X1X2/X3(ρ + β) and using a transformed set of
equations.

Due to the time delay, full analysis of this model is difficult, and beyond the
scope of this current article. However, Figure 6 illustrates a typical result us-
ing X0 = 17 , X1 = 4.9 , X2 = 660 , X3 = 4.32 , Y0 = 17 , Y3 = 14 , τ1 = 36/365

and τ2 = 50/365 , expressed in years. Initial values were L(0) = 18 and
A(0) = 0 . Results were scaled with respect to the maximum density of
larvae (1205) and adults (11333). Finding the optimal values of the coeffi-
cients X1, . . . , τ2 is difficult due to the nonlinearities associated with the time
delays. However, in obtaining the results plotted in Figure 6, it was evident
that a significant time delay is necessary to account for the initially small
values of parasite numbers followed by a rapid rise, something not found
when using the resistance model, Equations (1)–(3). In addition, the sharp
peak exhibited in the experimental data is not reproduced well by this ear-
lier resistance model, while this alternative time delay model with the abrupt
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Figure 6: Adult and larval densities calculated using Equations (12)–(15)
compared with experimental data [10].
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behaviour change at A = A∗ does model this peak and the resultant expo-
nential decay in the data. Interestingly, both L and A increase in two steps,
which is a common feature of much of the experimental data [2, 9].

All models of this type, including the original model, are simply mathematical
expressions based on reasonable physical assumptions which hopefully pro-
duce results to accurately replicate experimental data. The model then gives
some insight into the underlying mechanisms of parasite-host behaviour and
hence some predictive capabilities. Our alternative model is an extension of
the earlier model making some additional assumptions. It appears from our
preliminary study that this alternative model replicates key features of the
observed data better than the original model. This indicates to researchers
the potential importance of time delays and step function coefficients in fu-
ture models. We hope that further experiments provides data allowing veri-
fication and modification of the model, hence enabling researchers to gain a
better understanding of the fundamental dynamics of parasite growth.

5 Conclusion

This work illustrates appropriate methods for finding the functions Xi(R) in
Equations (1)–(3) given two sets of experimental data. The method is tested
using numerical experiments and found to be accurate. However, when tested
on experimental data the method yields physically unrealistic estimates of
the functions Xi(R). Hence we believe the initial resistance model may not
accurately reflect reality. We propose an alternative model which includes
time delay terms, and initial results look promising. Further work is necessary
to find a method of accurately finding the coefficients X1, . . . , τ2 in the time
delay model from experimental data.
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