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Numerical solution of nonlinear elliptic
systems by block monotone iterations
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Abstract

We present numerical methods for solving a coupled system of
nonlinear elliptic problems, where reaction functions are quasimonotone
nondecreasing. We utilize block monotone iterative methods based
on the Jacobi and Gauss—Seidel methods incorporated with the upper
and lower solutions method. A convergence analysis and the theorem
on uniqueness of solutions are discussed. Numerical experiments are

presented.
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1 Introduction

Several problems in the chemical, physical and engineering sciences are
characterized by coupled systems of nonlinear elliptic equations [3]. In this
article, we construct block monotone iterative methods for solving the coupled
system of nonlinear elliptic equations

—Laus(x,y) + falx,y,u) =0, (x,y)cw, a=12, (1)
w={xy):0<x<1,0<y<T1},
u(x,y) =gxy), [y cow,

where u = (uy,wy), f = (f1,12), g = (g1, 92), and dw is the boundary of w.
The differential operators Ly, o« = 1,2, are defined by

Loty (%, Y) = ex(Uanx + Uayy)

where ¢, with o« = 1,2, are positive constants. It is assumed that the
functions f, and g4, @« = 1,2, are smooth in their respective domains.

Block monotone iterative methods, based on the method of upper and lower
solutions, have only been used for solving nonlinear scalar elliptic equations |1,
2, 4]. The basic idea of the block monotone iterative methods is to decompose
a two dimensional problem into a series of one dimensional two-point boundary
value problems. Each of the one dimensional problems can be solved efficiently
by a standard computational scheme such as the Thomas algorithm.
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In this article we construct and investigate block monotone iterative methods
based on the Jacobi and Gauss—Seidel methods for solving coupled systems
of nonlinear elliptic equations with quasimonotone nondecreasing reaction
functions f, with o =1,2.

In Section 2 we consider a nonlinear difference scheme which approximates
the nonlinear elliptic problem (1) and describe the construction of the block
monotone Jacobi and Gauss—Seidel iterative methods. A convergence analysis
of the block monotone Jacobi and Gauss—Seidel iterative methods is discussed.
The theorem on uniqueness of a solution to the nonlinear difference scheme is
proved. Section 3 presents numerical experiments.

2 Block monotone iterative methods

On w = wUdw we introduce a rectangular mesh w" = W™ x W™ = wW"UIW"
where dw" is the boundary of the mesh w" and

hx_{Xhi:O?‘l,”' NX) X'O:Oa XNX:]; hX:Xi+1_Xi}7
W ={y;,j=0,1,...,Ny; yo=0, yn,=1; hy=yj1—yj}

For a mesh function U(pl]) = (U1 (pij)7 Uz(pij)) with Pij = (Xi,y]') S " we
use the difference scheme

LoijUa(py) + fulpy, W) =0, py €, a=12, (2)
U(py) = glpy), Py € dw",

The linear difference operators £, are defined by

L(Xl)u (Pu) —Ex (D u (pu) + Dzuoc(pij)) )
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where D2U,(py) and ijua(pij) for « = 1,2 are the central difference ap-
proximations to the second derivatives:

Ugio1j — 2Ugq5 + Ugivrj

DU (py) = ) ,
Weij1— 2Ug 5 + Uy g _
Déua(Pﬁ) = : h; ] R Uy = Ug(py) -
y

The vector mesh functions U and U are ordered upper and lower solutions,
respectively, of (2) which satisfy the inequalities

ﬂoc(pij) P ﬂoc(pij) , Py € w", (3)
LoiiUa(pi) + fulpij, U) < 0 < LoijUalpy) + falpi, W), pyj € O,

Ua(py) < gulpy) < Ualpy),  py €0a™, a=1,2.
For a given pair of ordered upper and lower solutions U and U we define the
sector

(11&) = {U(Ptj) :ﬁoc(pij) < Ug(py) < ﬁa(Pij), py € O, o= 1,2}‘

We assume that on (U, U) the vector function f(py, U) in (2) satisfies the
constraints

(fo(py, U))ua
—(fu(pyj, U))ua,

for py € W™ and where (fo)u, = 0fs/OUn, (fo)u, = 0fa/Ouy and cq are
non-negative bounded functions on w"™. The vector function f(py, U) is

oc(pi]')a u€<ﬁ7u>7 “:1727 (4)

<c
>0, Ue(ﬂ,ﬂ), o Foa, o« =12, (5)

quasimonotone nondecreasing on (U, U) if it satisfies (5).

To construct block iterative methods we write the difference scheme (2) at an
interior mesh point p; € w" in the form

doc,ijuoc,ij - 1oc,ijuoc,i71,j - Toc,ijucx,i+1,j - boc,ijuoc,i,jfl - toc,ijuoc,i,jJr] =
*
— folpyj, Ur g, Uzy) + Ggy (6)
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where G}, like the boundary function g4, describes the boundary mesh points,
and

Ex €u
l(xi.—r.,—_ b, =t,:: = —

A o, ij 7 o, o, 2
h? hy

doij = laij + Taij + boij +taij, =12,
Define column vectors and diagonal matrices by
_ T * * * T
uoc,i - (uoc,i,Oa s 7uoc,i,Ny) ) G(x,i - ( ot 10t o(,i,Nyfl) )
.
o, iy i) = i, 4,1 A1) os o i,Ny— 4,Ny—T15 ANy — )
Foi(Wr i, Upi) = (Fagi1 (W1, Uzin) Foing—1(Wring—1, U2ing 1)
Lo = diag(lait, - - baging 1), Ragi = diag(Tain, - - TaiNg—1)
fori=0,1,..., N, and where

_ FLi(uLiy uz,i) ) x =1 ) /

Foc,l(uoc,u uoc’,l) = { FZ,i(u1,i> Uz,i) L o= 2’ x 7& &, (7)
with symmetry Fyi(Uqgi, Uy i) = Fai(Uw i, Ugi) . Thus, Ly 1Uqp is on the
boundary and in GZJ, and Ryn,—1UgnN, is on the boundary and in G;NX.
Then the difference scheme (2) is written in the form

A(x,iuoc,i - (L(x,iuoc,if1 + Roc,iuoc,i+1) - _F(x,i(uoc,i: uoc’,i) + Gz,i ) (8)
ui:(u],i7u2,i)v 1.':1727"'7]\])(_]) (X:]aza
where Ay ; is the tridiagonal matrix with elements dq g, loy and 143 with

j=0,1,...,Ny. The elements of the matrices L; and Ry; are the coupling
coefficients of a mesh point to Ugi—1; and Ug ;15 withj =1,2,... /Ny —1.

The upper {lilf:l)} and lower {ﬂf;)} sequences of solutions with number of
iterations n > 1 are calculated by the following block Jacobi (n = 0) and
Gauss—Seidel (n = 1) iterative methods:

—1 —1
A“:izf(:i) _nLaviZg,li)q + Coc,izt(:i) - _jcm(u(“ Lul ))7

o, » ol i
—1 —1 —1 —1 —1
KUy Ui ) = AUy = Loy — Rl

+ (Ul ul ) - G

ol i ol
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where x =1,2and i=1,2,. NX—1,

(n g - u , M= 1 9 L
Z‘“_{OO,H ot ns2 1=0,N,, 9)
20 U -, n-on
where Ui(n*” = (uﬁjﬁ”,ugf”) : :Km,i(uf;‘;”,ug?{”) are the residuals of
the difference equations (8) on fo“f”, and O is the zero column vector
with Ny — 1 components. The matrices C4; are the diagonal matrices
diag(ca,i, - - - CayiNg—1) Where the cq = co(pyj) are defined in (4).

The mean-value theorem for vector-valued functions is
ch,i(uoc,iv uoc’,i) - Foc,i(vcx,ia uoc’,i) - (Foc,i(Yoc,ia uoc’,i))u [uoc,i - voc,i] ) (10)
Foc,i(uoc,ia uoc/,i) - Foc,i(uoc,ia ch’,i) - (Foc,i(ucx,i; Yoc’,i))u /[uoc’,i - Voc’,i] ;
where the Yy ; lie between Uy ; and V3, and the Yy ; lie between Uy ; and Vi 5,
fori=12..., Ny—1, & #«, &,/ =1,2. The partial derivatives are the
diagonal matrices
(Foc 1) - dlag(( o,i,1 )u(xa R (foc,i,Ny—l)u[x) )
(F(x L)u - dlag((f(x,i,] )u cey (fcx,i,Ngfl )ua/)a

where (fyij)u, and (faijlu, . j =1,2,...,Ny—1, are calculated at Yy ; and Yo,
respectively.

ol

Theorem 1. Assume that fo with o = 1,2 satisfies (4) and (5). Let U=
(Uy, Uy) and 0= 01 ﬁz be ordered upper and lower solutions of (9) Then

fori=0,1,..., Ny the upper sequence {U } generated by (9) with u® =u

converges monotomcally from above to a mammal solution V, and similarly,
the lower sequence {0211)} generated by (9) with 0@ =10 converges from below

to a minimal solution V, such that,

A0 <A < V< Vi < U < T (11

o1 x,1 x,1 x,1 ?
where the inequalities between vectors are in a component-wise sense, for
example, Ug; < Vi implies Ug g < Vi for all j =0,..., Ny



2 Block monotone iterative methods C85

Proof: Since U® is an initial upper solution (3), from (9) we have

i=1,2,...,N,—1,
(12)

(1 (1 = (1 0) y7(0
AuiZl) — Lo Zl) 4 Coizl] = —3(u, ul?)

i (X,l) ’

70 <o, i=0,N,, «a=1,2.

Since Ly = O and (Ayi + Coi) ™' = O (Corollary 3.20, [6]) where O is the
(Ny — 1) x (Ny — 1) null matrix, for i =1 in (12) and Z!! 0 < 0, we conclude
that 2(1) < 0. Fori=21in (12), using Ly, > O and Z((x < 0, we obtain
fo 5 < 0. Thus, by induction on i we prove that

Z)<0, i=0,1,....N,, a=1.2. (13)
Similarly, we can prove that

20)>0, i=0,1,....N,, «a=1.2. (14)
We now prove that

all <ul), i=0,1,....,N,, «a=1,2. (15)
Deﬁningwg):ﬁg}i)—ﬂg;) fori=0,1,...,Nyand « = 1,2, from (9) with
i=1,2,...,N,—1and « =1 we have
A“Wl LHWHH—C“WH—CHW +R11W11+1 (16)

[ﬁ (U0 U9 — Fy (9, T )]
— [Fa@, ) - Rl ag))

and for i = 0, Ny we have iji) = 0. By the mean-value theorem (10), for

i=0,1,..., N, we have
(F1 i(ngi)aﬂéoi))) [ﬂ -0 (,)i)] )

(0) (
1,1 1
(F11(ﬂ ) Q21) 2[ é _ﬂé?i)]a

F],i(flgoi)ilgoi)) - F] 1(0 uzl )

1,10

F]l(ﬁ]17ﬂ ) F]l(ﬁl 1)70 )
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where U 03 < Q‘(XO < for o« = 1,2, and we conclude that (F; i)y, and (Fy i),
satisfy (4 ) and (5). Now with (16) we have, fori=1,2,... /Ny —1,

A] 1W I—l 1W1ji_] + C],1W1 ,]i = (Cl,i - (F1,i)u1 ) W(O') (17)

1,1

0 0
— (Fu)quz(,i) + RLiW](,i)H ;

and Wf’]i) =0 for i = 0,N,. Now with (4) and (5), and since W(ECOB > 0 for
1=0,1,...,Nyand « =1,2, and R;; > O, we obtain
AW +CawY > Lwil L =120 Ne— 1, (18)
Wl =0, i=0,N,.
Since (A1 +Cii)' > Ofori=1,2,..., N, —1, withi=1in (18) and
W1(,1o) =0, we conclude that ij]) > 0. Fori=21in (18), and using L, > 0
and W](j]) > 0, we obtain W1(,]z) > 0. Thus, by induction on i we prove that

wl>0, 1=0,1,...,N,.

,1

By following a similar argument we can prove (15) for o« = 2.

We now prove that u! i ) and ﬂ ;i withi=0,1,...,Nyand o = 1,2 are upper
and lower solutions to (9), respectlvely From (9) with o« = 1 and using the

mean-value theorem (10), we conclude that fori =1,2,... Ny —1,
oF (BN Ul - oF (WY BNy .
gc] 1(u1 A 7u ) - <C1 i 1 ( 1L 2l )> Z1“i] + : ( - = )Zéli)
’ owy ’ ou, ’
—R 1Z1 A1 (19)

where 3 . .

Ul <E <ull, i=01.00 Ny, a=1,2.
From (13), (14) and (15) we conclude that 0F ;/0u; and 0F; ;/0u, satisfy (4)
and (5). From (4), (5), (13) and since Ry; > O we conclude that

3G (MY Uy =0, =12, N1, (20)

1,1



2 Block monotone iterative methods C87

Similarly, .
Fo (WS, Uy =0, =12, N1, (21)

From (3), (20) and (21) we conclude that (U\") Ugi)) fori=0,1,..., Ny is

11>
an upper solution to (2). In a similar manner we obtain

5 (00, Q)Y <0, 2, A <0, i=12,0 N T,

11
. (1) . .
which means (01 i ,ﬂ ) for i =0,1,..., Ny is a lower solution to (2). By
induction on n we can prove that {U } and {0 } with 1 = 0,1,..., Ny
and o« = 1,2 are, respectively, monotone decreasmg upper and monotone
increasing lower sequences of solutions.

Now we prove that the limiting functions of the upper sequence {ﬂfxni)}

and lower sequence {ﬂ } with 1 = 0,1,...,N, and o« = 1,2 are, respec-
tively, maximal and mlmmal solutions of ( ) From (11) we conclude that

im0 U((an) = Um exists and

lim Z0V =0, i=0,1,...,N,, a=1.2. (22)

n—oo

Similar to (19), we have

R1 1Z " (23)

1,i+1

where

uly <El <uly’, i=0,1,..N,, a=1,2.

ol

By taking the hmlt of both sides of (23), and using (13), it follows that

g W)y =0, i=1,2,... N, 1. (24)
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Similarly, we obtain
Koi(Up, Uy ) =0, i=1,2,...,N,—1, (25)

From (24) and (25) we conclude that (11171,11271) with1i=0,1,...,Nyis a
maximal solution to the nonlinear difference scheme (2). In a similar manner,
we can prove that

K],i(ﬂLi;O‘Z,i) :Oa JCZ,i(OZﬁua],i) :Oy i= ]72a"'7NX_1 3

which means that (0171, ﬂz,i) with 1 =0,1,..., N, is a minimal solution to
the nonlinear difference scheme (2). [ )

2.1 Convergent analysis

Assume that the reaction functions f, with o« = 1,2 satisfy the assumptions

0 < Calx,y) < (fulx,y,w)), < Calx,y), (26)
0< —(falx,y, 1), < daw(xy), o #o, o, =12, (27)
P = min { min 6“(x,y)} >0, (28)
a=1,2 | (x,y)e®
qaa’(xay))} ’ /
0<p= —— <1, «#x, o« =12. (29
b= max Lm) ( et ) 7 (29)

A stopping test for the block monotone iterative methods (9) is chosen to be

ma | Ko(U™ ) flon <8, KU [lgr = _max [Kea(U™)], (30)

a=1
where 0 is a prescribed accuracy.
The linear version of problem (2) is

Lo iWa(pyy) + ci(pi)Walpy) = Oulps) . Py € w", (31)
W(py) =g(pij), py€ow™, a=1,2,



2 Block monotone iterative methods C89

where W = (W;, W,) and the c}, with & = 1, 2 are positive bounded functions.
We give an estimate of the solution to (31) in the following lemma.

Lemma 2. The solution to (31) satisfies

[Wallon < max{[|gallowr; |Pa/cillont, a=1,2, (32)
where
q)oc (Doc(pij)
allowr = Max [gulPijll, = — .
19allown ! . 9a(py)l e || =2 | e o)

Samarskii [5] proves this lemma.

Theorem 3. Let assumptions (26)—(29) be satisfied. Then for the se-
quence {U™} generated by the block monotone iterative methods (9) we have

1
— 5,
(1—B)p
where U* is a solution of the nonlinear difference scheme (2) and ng is the
minimal number of iterations subject to (30).

uts) — Ul gn < (33)

Proof: The existence of a solution U* to the nonlinear difference scheme (2)
is established in Theorem 1. From (2), for u™ and U, we have

LagUS™ (py) + falpy, UM)) = Koy (U USST) py € @,

uo“,] (pl))_goc(pij)v pijeawha (X:];z:

LoyUWs(py) + fulpy, U*) =0, py € wh,

Ul (py) = gulpy) . py € 0™, a=1,2.
Letting W&n) = U&n) — U} for o« = 1,2 and using the mean-value theorem,
we obtain

'Coc,ijw(n (pu) + (f (Pu, H )) + uocw(né)(pij) =

(f (Pu, ))u v (Pu) _|_[KM](U““3 ”7uc(>:'ﬁj_])) Py € wh’

W (pl]) 07 Pijeaw ) O(;A(X, 0(,0(/:1,2,

oL
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where H&né) lies between U((xnf’) and U for o« = 1,2. Using the maximum
principle (32) we conclude that

n n n —1
W o < |Ka(UM ) [(FalHED)), T llan
1 (FalH D)/ (FalHED), llon Wl
Letting W™) = max,_1, ||W‘(xn6) llon and with (28) and (29) we obtain

w(“é)g(maxnjc um)e" + pwine).

Now with (30) we have (33). Thus, we prove the theorem. [ )

2.2 Uniqueness of a solution

In this section we prove uniqueness of a solution of the discrete problem (2).

Theorem 4. Let assumptions (26)-(29) be satisfied. Then the nonlinear
difference scheme (2) has a unique solution.

Proof: To prove the uniqueness of a solution to the nonlinear difference
scheme (2), because of (11), it suffices to prove that Vi = V, , where V, and V,
are the minimal and maximal solutions. Substituting W, = V, — V, into (2)
we have

Lo iWalpy) + foc(Pij,V) — foc(pijav) =0, pye€wh,
W“(pij)zo, pijeawh, x=1,2.

Using the mean-value theorem we obtain

(Locij + (ful(py, ch ) «(Pij) «(Pij; ro’)) Wod(pij) )
pij € W, Wy(py) =0, pueﬁw o # o, oc,oc':1,2,
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where Va(pij) Qulpy) < (pu for « = 1,2. Using the maximum princi-
ple (32) we conclude that
HWocHd)h < (foc(ro’))u‘x/Wod[(foc(ro))ucx]i] Hwh

(Focl Qe [l Qe ™l [ Wee st -
Using (29) we obtain
[Wellan < Bl[Wallon -
Let W = maxq—12 |[Waq|lgn so that
W1 —-8)<0.

From (28) and since W > 0 we conclude that W = 0. Thus, we prove the
theorem. 'y
As follows from Theorems 1 and 4, under assumptions (26)—(29), the sequences
of solutions generated by the block Jacobi and Gauss—Seidel methods converge
to the unique solution of the nonlinear difference scheme (2).

3 Numerical experiments

As a test problem we consider the gas-liquid interaction model [3] where
reaction functions are

filw,w) = —or(1 —wluy, fr(u,w) =ox(1 —wy)uy, (34)

where u; > 0 and u, > 0 are concentrations of the gas and liquid, respectively,
and o, = const > 0 with o« = 1,2 are reaction rates.

We choose ¢; = 1, ¢, = 0.1, the boundary conditions g;(x,y) = 0 and
g20x,y) =1, (x,y) € 0w in (1), and 0, = 1 for « = 1,2. The pairs
(fh,flz) 1 1) and 01 ﬂz (0,0) are ordered upper and lower solutions.
From (34) we conclude that

(f1)u1 =u < 1 )
(f)u, =T—-w <1, —(f2)y, =w,
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Table 1: Numerical error and order of convergence of the nonlinear scheme (2).

N \ 8 16 32 64 128
E [0.0071 0.0017 4.47 x 107* 1.06 x 10~* 2.13 x 107
vy |1.97  2.01 2.06 2.32

Table 2: Number of iterations and CPU time for the block methods.
N 8 16 32 64 128

block Jacobi method

# of iterations | 101 397 1577 6299 25189
CPU (s) 0.02 0.11 0.91 14.17 225.99

block Gauss—Seidel method

# of iterations | 51 180 762 3084 12370
CPU (s) 0.01 0.06 047 734 117.62

It follows that f, with o = 1,2 satisfy (4) with ¢, = 1 and (5). Since the
exact solution of the test problem is unavailable, we define the numerical
error and the order of convergence of the numerical solution, respectively, as

n ns)r —E(N)
E(N) = maxs | max [ (py) = U™ (py)| | V(N):logz(E(ZN))’

where U™ (pyj) with @ = 1,2 are the approximate solutions generated by (9),

Mg is the minimal number of iterations subject to (30), and U&né)r(pij) with
« = 1,2 are reference solutions with number of mesh points N =512.

Table 1 presents the error E(N) and order of convergence y(N) for different
values of Ny = Ny = N. This table indicates that the numerical solution of
the nonlinear difference scheme (2) converges to the reference solution with
second-order accuracy. The numerical and reference solutions are calculated by
the block Jacobi or Gauss—Seidel methods. Tables 2 and 3 show that the block
Gauss—Seidel method converges faster than the block Jacobi method, and the
block monotone methods (Table 2) converge faster than the corresponding
monotone Gauss—Seidel and Jacobi methods (Table 3).
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Table 3: Number of iterations and CPU time for the Jacobi and Gauss—Seidel

methods.
N 8 16 32 64 128
Jacobi method
# of iterations | 190 771 3092 12378 49520
CPU (s) 0.08 0.11 1.09 16.15 261.28
Gauss—Seidel method
# of iterations | 97 388 1548 6191 24762
CPU (s) 0.12 040 053 858 141.37
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