Numerical solution of nonlinear elliptic systems by block monotone iterations

M. Al-Sultani ${ }^{1} \quad$ I. Boglaev ${ }^{2}$

(Received 7 February 2019; revised 4 June 2019)

Abstract

We present numerical methods for solving a coupled system of nonlinear elliptic problems, where reaction functions are quasimonotone nondecreasing. We utilize block monotone iterative methods based on the Jacobi and Gauss-Seidel methods incorporated with the upper and lower solutions method. A convergence analysis and the theorem on uniqueness of solutions are discussed. Numerical experiments are presented.

Contents

1 Introduction

Dor:10.21914/anziamj.v60i0.13986 gives this article, © Austral. Mathematical Soc. 2019. Published July 12, 2019, as part of the Proceedings of the 18th Biennial Computational Techniques and Applications Conference . ISSN 1445-8810. (Print two pages per sheet of paper.) Copies of this article must not be made otherwise available on the internet; instead link directly to the DOI for this article.
2 Block monotone iterative methods2.1 Convergent analysisC88
2.2 Uniqueness of a solution C90
3 Numerical experimentsReferences

1 Introduction

Several problems in the chemical, physical and engineering sciences are characterized by coupled systems of nonlinear elliptic equations [3]. In this article, we construct block monotone iterative methods for solving the coupled system of nonlinear elliptic equations

$$
\begin{align*}
& -\mathrm{L}_{\alpha} u_{\alpha}(x, y)+\mathrm{f}_{\alpha}(x, y, u)=0, \quad(x, y) \in \omega, \quad \alpha=1,2 \tag{1}\\
& \omega=\{(x, y): 0<x<1,0<y<1\} \\
& u(x, y)=g(x, y), \quad(x, y) \in \partial \omega
\end{align*}
$$

where $\mathfrak{u}=\left(u_{1}, u_{2}\right), f=\left(f_{1}, f_{2}\right), g=\left(g_{1}, g_{2}\right)$, and $\partial \omega$ is the boundary of ω. The differential operators $\mathrm{L}_{\alpha}, \alpha=1,2$, are defined by

$$
\mathrm{L}_{\alpha} \mathrm{u}_{\alpha}(x, y) \equiv \varepsilon_{\alpha}\left(u_{\alpha, \chi x}+u_{\alpha, y y}\right)
$$

where ε_{α} with $\alpha=1,2$, are positive constants. It is assumed that the functions f_{α} and $g_{\alpha}, \alpha=1,2$, are smooth in their respective domains.

Block monotone iterative methods, based on the method of upper and lower solutions, have only been used for solving nonlinear scalar elliptic equations [1, $2,4]$. The basic idea of the block monotone iterative methods is to decompose a two dimensional problem into a series of one dimensional two-point boundary value problems. Each of the one dimensional problems can be solved efficiently by a standard computational scheme such as the Thomas algorithm.

In this article we construct and investigate block monotone iterative methods based on the Jacobi and Gauss-Seidel methods for solving coupled systems of nonlinear elliptic equations with quasimonotone nondecreasing reaction functions f_{α} with $\alpha=1,2$.

In Section 2 we consider a nonlinear difference scheme which approximates the nonlinear elliptic problem (1) and describe the construction of the block monotone Jacobi and Gauss-Seidel iterative methods. A convergence analysis of the block monotone Jacobi and Gauss-Seidel iterative methods is discussed. The theorem on uniqueness of a solution to the nonlinear difference scheme is proved. Section 3 presents numerical experiments.

2 Block monotone iterative methods

On $\bar{\omega}=\omega \cup \partial \omega$ we introduce a rectangular mesh $\bar{\omega}^{h}=\bar{\omega}^{h x} \times \bar{\omega}^{h y}=\omega^{h} \cup \partial \omega^{h}$ where $\partial \omega^{h}$ is the boundary of the mesh ω^{h} and

$$
\left.\left.\begin{array}{lll}
\bar{w}^{h x}=\left\{x_{i}, i=0,1, \ldots, N_{x} ;\right. & x_{0}=0, & x_{N_{x}}=1 ;
\end{array} h_{x}=x_{i+1}-x_{i}\right\}, ~ 子, \quad y_{N_{y}}=1 ; \quad h_{y}=y_{j+1}-y_{j}\right\} .
$$

For a mesh function $U\left(p_{i j}\right)=\left(U_{1}\left(p_{i j}\right), U_{2}\left(p_{i j}\right)\right)$ with $p_{i j}=\left(x_{i}, y_{j}\right) \in \bar{\omega}^{h}$ we use the difference scheme

$$
\begin{align*}
& \mathcal{L}_{\alpha, i j} \mathrm{U}_{\alpha}\left(p_{i j}\right)+\mathrm{f}_{\alpha}\left(p_{i j}, \mathrm{U}\right)=0, \quad p_{i j} \in \omega^{h}, \quad \alpha=1,2 \tag{2}\\
& \mathrm{U}\left(p_{i j}\right)=\mathrm{g}\left(p_{i j}\right), \quad p_{i j} \in \partial \omega^{h}
\end{align*}
$$

The linear difference operators \mathcal{L}_{α} are defined by

$$
\mathcal{L}_{\alpha, i j} \mathrm{U}_{\alpha}\left(\mathrm{p}_{i j}\right)=-\varepsilon_{\alpha}\left(\mathrm{D}_{\chi}^{2} \mathrm{U}_{\alpha}\left(\mathrm{p}_{\mathrm{ij}}\right)+\mathrm{D}_{\mathrm{y}}^{2} \mathrm{U}_{\alpha}\left(\mathrm{p}_{\mathrm{ij}}\right)\right)
$$

where $D_{\chi}^{2} U_{\alpha}\left(p_{i j}\right)$ and $D_{y}^{2} U_{\alpha}\left(p_{i j}\right)$ for $\alpha=1,2$ are the central difference approximations to the second derivatives:

$$
\begin{aligned}
\mathrm{D}_{x}^{2} \mathrm{U}_{\alpha}\left(\mathfrak{p}_{\mathrm{ij}}\right) & =\frac{\mathrm{U}_{\alpha, \mathrm{i}-1, \mathrm{j}}-2 \mathrm{U}_{\alpha, i \mathrm{j}}+\mathrm{U}_{\alpha, i+1, \mathrm{j}}}{\mathrm{~h}_{x}^{2}}, \\
\mathrm{D}_{y}^{2} \mathrm{U}_{\alpha}\left(\mathfrak{p}_{\mathrm{ij}}\right) & =\frac{\mathrm{U}_{\alpha, i, j-1}-2 \mathrm{U}_{\alpha, \mathrm{ij}}+\mathrm{U}_{\alpha, i, j+1}}{\mathrm{~h}_{y}^{2}}, \quad \mathrm{U}_{\alpha, \mathrm{ij}} \equiv \mathrm{U}_{\alpha}\left(\mathfrak{p}_{\mathrm{ij}}\right) .
\end{aligned}
$$

The vector mesh functions $\widetilde{\mathrm{U}}$ and $\widehat{\mathrm{U}}$ are ordered upper and lower solutions, respectively, of (2) which satisfy the inequalities

$$
\begin{aligned}
& \widetilde{\mathrm{U}}_{\alpha}\left(\mathrm{p}_{\mathrm{ij}}\right) \geqslant \widehat{\mathrm{u}}_{\alpha}\left(\mathrm{p}_{\mathrm{ij}}\right), \quad \mathrm{p}_{\mathrm{ij}} \in \bar{\omega}^{h}, \\
& \mathcal{L}_{\alpha, i j} \widehat{\mathrm{U}}_{\alpha}\left(\mathrm{p}_{i j}\right)+\mathrm{f}_{\alpha}\left(\mathrm{p}_{\mathrm{ij}}, \widehat{\mathrm{u}}\right) \leqslant 0 \leqslant \mathcal{L}_{\alpha, i j} \widetilde{\mathrm{U}}_{\alpha}\left(\mathrm{p}_{i j}\right)+\mathrm{f}_{\alpha}\left(\mathrm{p}_{\mathrm{ij}}, \widetilde{\mathrm{u}}\right), \quad \mathrm{p}_{\mathrm{ij}} \in \omega^{h}, \\
& \widehat{\mathrm{U}}_{\alpha}\left(\mathrm{p}_{\mathrm{ij}}\right) \leqslant \mathrm{g}_{\alpha}\left(\mathrm{p}_{\mathrm{ij}}\right) \leqslant \widetilde{\mathrm{u}}_{\alpha}\left(\mathrm{p}_{\mathrm{ij}}\right), \quad \mathrm{p}_{\mathrm{ij}} \in \partial \omega^{\mathrm{h}}, \quad \alpha=1,2 .
\end{aligned}
$$

For a given pair of ordered upper and lower solutions $\widetilde{\mathrm{U}}$ and $\widehat{\mathrm{U}}$ we define the sector

$$
\langle\widehat{\mathrm{u}}, \widetilde{\mathrm{u}}\rangle=\left\{\mathrm{u}\left(\mathfrak{p}_{\mathrm{ij}}\right): \widehat{\mathrm{u}}_{\alpha}\left(\mathrm{p}_{\mathrm{ij}}\right) \leqslant \mathrm{u}_{\alpha}\left(\mathrm{p}_{\mathrm{ij}}\right) \leqslant \widetilde{\mathrm{u}}_{\alpha}\left(\mathrm{p}_{\mathrm{ij}}\right), \quad \mathrm{p}_{\mathrm{ij}} \in \bar{\omega}^{\mathrm{h}}, \quad \alpha=1,2\right\} .
$$

We assume that on $\langle\widehat{\mathbf{U}}, \widetilde{\mathbf{U}}\rangle$ the vector function $\mathfrak{f}\left(\mathfrak{p}_{\mathfrak{i} j}, \mathrm{U}\right)$ in (2) satisfies the constraints

$$
\begin{align*}
& \left(f_{\alpha}\left(p_{i j}, u\right)\right)_{u_{\alpha}} \leqslant c_{\alpha}\left(p_{i j}\right), \quad u \in\langle\widehat{\mathrm{u}}, \widetilde{\mathrm{u}}\rangle, \quad \alpha=1,2, \tag{4}\\
& -\left(\mathrm{f}_{\alpha}\left(\mathrm{p}_{\mathrm{ij}}, \mathrm{U}\right)\right)_{\mathrm{u}_{\alpha^{\prime}}} \geqslant 0, \quad \mathrm{u} \in\langle\widehat{\mathrm{u}}, \widetilde{\mathrm{u}}\rangle, \quad \alpha^{\prime} \neq \alpha, \quad \alpha, \alpha^{\prime}=1,2, \tag{5}
\end{align*}
$$

for $p_{i j} \in \bar{\omega}^{h}$ and where $\left(f_{\alpha}\right)_{u_{\alpha}} \equiv \partial f_{\alpha} / \partial u_{\alpha},\left(f_{\alpha}\right)_{u_{\alpha^{\prime}}} \equiv \partial f_{\alpha} / \partial u_{\alpha^{\prime}}$ and c_{α} are non-negative bounded functions on $\bar{\omega}^{h}$. The vector function $f\left(p_{i j}, U\right)$ is quasimonotone nondecreasing on $\langle\widehat{\mathrm{U}}, \widetilde{\mathrm{U}}\rangle$ if it satisfies (5).
To construct block iterative methods we write the difference scheme (2) at an interior mesh point $p_{i j} \in \omega^{h}$ in the form

$$
\begin{align*}
& \mathrm{d}_{\alpha, i \mathrm{j}} \mathrm{U}_{\alpha, i \mathrm{ij}}-\mathrm{l}_{\alpha, \mathrm{i}} \mathrm{U}_{\alpha, \mathrm{i}-1, \mathrm{j}}-\mathrm{r}_{\alpha, i \mathrm{i}} \mathrm{U}_{\alpha, i+1, \mathrm{j}}-\mathrm{b}_{\alpha, i \mathrm{j}} \mathrm{U}_{\alpha, \mathrm{i}, \mathrm{j}-1}-\mathrm{t}_{\alpha, \mathrm{ij}} \mathrm{U}_{\alpha, \mathrm{i}, \mathrm{j}+1}= \\
& -\mathrm{f}_{\alpha}\left(\mathrm{p}_{\mathrm{ij}}, \mathrm{U}_{1, \mathrm{ij}}, \mathrm{U}_{2, \mathrm{ij}}\right)+\mathrm{G}_{\alpha, \mathrm{ij}}^{*}, \tag{6}
\end{align*}
$$

where G_{α}^{*}, like the boundary function g_{α}, describes the boundary mesh points, and

$$
\begin{aligned}
& l_{\alpha, i j}=r_{\alpha, i j}=\frac{\varepsilon_{\alpha}}{h_{x}^{2}}, \quad b_{\alpha, i j}=t_{\alpha, i j}=\frac{\varepsilon_{\alpha}}{h_{y}^{2}} \\
& d_{\alpha, i j}=l_{\alpha, i j}+r_{\alpha, i j}+b_{\alpha, i j}+t_{\alpha, i j}, \quad \alpha=1,2
\end{aligned}
$$

Define column vectors and diagonal matrices by

$$
\begin{aligned}
& \mathrm{U}_{\alpha, i}=\left(\mathrm{U}_{\alpha, i, 0}, \ldots, \mathrm{U}_{\alpha, i, N_{y}}\right)^{\top}, \quad \mathrm{G}_{\alpha, i}^{*}=\left(\mathrm{G}_{\alpha, i, 1}^{*}, \ldots, \mathrm{G}_{\alpha, i, N_{y}-1}^{*}\right)^{\top} \\
& \mathrm{F}_{\alpha, i}\left(\mathrm{U}_{1, i}, \mathrm{U}_{2, i}\right)=\left(\mathrm{f}_{\alpha, i, 1}\left(\mathrm{U}_{1, i, 1}, \mathrm{U}_{2, i, 1}\right), \ldots, f_{\alpha, i, N_{y}-1}\left(\mathrm{U}_{1, i, \mathrm{~N}_{y}-1}, \mathrm{U}_{2, i, N_{y}-1}\right)\right)^{\top} \\
& \mathrm{L}_{\alpha, i}=\operatorname{diag}\left(l_{\alpha, i, 1}, \ldots, l_{\alpha, i, N_{y}-1}\right), \quad \mathrm{R}_{\alpha, i}=\operatorname{diag}\left(\mathrm{r}_{\alpha, i, 1}, \ldots, \mathrm{r}_{\alpha, i, N_{y}-1}\right)
\end{aligned}
$$

for $i=0,1, \ldots, N_{x}$ and where

$$
\mathrm{F}_{\alpha, i}\left(\mathrm{U}_{\alpha, i}, \mathrm{U}_{\alpha^{\prime}, i}\right)=\left\{\begin{array}{ll}
\mathrm{F}_{1, i}\left(\mathrm{U}_{1, i}, \mathrm{U}_{2, i}\right), & \alpha=1, \tag{7}\\
\mathrm{~F}_{2, i}\left(\mathrm{U}_{1, i}, \mathrm{U}_{2, i}\right), & \alpha=2,
\end{array} \quad \alpha^{\prime} \neq \alpha\right.
$$

with symmetry $F_{\alpha, i}\left(\mathrm{U}_{\alpha, i}, \mathrm{U}_{\alpha^{\prime}, i}\right)=\mathrm{F}_{\alpha, i}\left(\mathrm{U}_{\alpha^{\prime}, i}, \mathrm{U}_{\alpha, i}\right)$. Thus, $\mathrm{L}_{\alpha, 1} \mathrm{U}_{\alpha, 0}$ is on the boundary and in $\mathrm{G}_{\alpha, 1}^{*}$, and $\mathrm{R}_{\alpha, \mathrm{N}_{\chi}-1} \mathrm{U}_{\alpha, \mathrm{N}_{\chi}}$ is on the boundary and in $\mathrm{G}_{\alpha, \mathrm{N}_{\chi}}^{*}$. Then the difference scheme (2) is written in the form

$$
\begin{align*}
& \mathrm{A}_{\alpha, i} \mathrm{U}_{\alpha, \mathrm{i}}-\left(\mathrm{L}_{\alpha, \mathrm{i}} \mathrm{U}_{\alpha, i-1}+\mathrm{R}_{\alpha, \mathrm{i}} \mathrm{U}_{\alpha, i+1}\right)=-\mathrm{F}_{\alpha, i}\left(\mathrm{U}_{\alpha, i}, \mathrm{U}_{\alpha^{\prime}, i}\right)+\mathrm{G}_{\alpha, i}^{*} \tag{8}\\
& \mathrm{U}_{i}=\left(\mathrm{U}_{1, i}, \mathrm{U}_{2, i}\right), \quad \mathfrak{i}=1,2, \ldots, \mathrm{~N}_{x}-1, \quad \alpha=1,2
\end{align*}
$$

where $A_{\alpha, i}$ is the tridiagonal matrix with elements $d_{\alpha, i j}, l_{\alpha, i j}$ and $r_{\alpha, i j}$ with $\mathfrak{j}=0,1, \ldots, N_{y}$. The elements of the matrices $L_{\alpha, i}$ and $R_{\alpha, i}$ are the coupling coefficients of a mesh point to $\mathrm{U}_{\alpha, i-1, j}$ and $\mathrm{U}_{\alpha, i+1, j}$ with $\mathfrak{j}=1,2, \ldots, N_{y}-1$. The upper $\left\{\tilde{U}_{\alpha, i}^{(n)}\right\}$ and lower $\left\{\widehat{U}_{\alpha, i}^{(n)}\right\}$ sequences of solutions with number of iterations $\eta \geqslant 1$ are calculated by the following block Jacobi $(\eta=0)$ and Gauss-Seidel $(\eta=1)$ iterative methods:

$$
\begin{aligned}
& A_{\alpha, i} Z_{\alpha, i}^{(n)}-\eta L_{\alpha, i} Z_{\alpha, i-1}^{(n)}+C_{\alpha, i} Z_{\alpha, i}^{(n)}=-\mathcal{K}_{\alpha, i}\left(U_{\alpha, i}^{(n-1)}, U_{\alpha^{\prime}, i}^{(n-1)}\right), \\
& \mathcal{K}_{\alpha, i}\left(\mathrm{U}_{\alpha, \mathrm{i}}^{(\mathrm{n}-1)}, \mathrm{U}_{\alpha^{\prime}, \mathrm{i}}^{(\mathrm{n}-1)}\right)=\mathrm{A}_{\alpha, \mathrm{i}} \mathrm{U}_{\alpha, \mathrm{i}}^{(\mathrm{n}-1)}-\mathrm{L}_{\alpha, i} \mathrm{U}_{\alpha, \mathrm{i}-1}^{(\mathrm{n}-1)}-\mathrm{R}_{\alpha, \mathrm{i}} \mathrm{U}_{\alpha, \mathrm{i}+1}^{(\mathrm{n}-1)} \\
& +F_{\alpha, i}\left(U_{\alpha, i}^{(n-1)}, U_{\alpha^{\prime}, i}^{(n-1)}\right)-G_{\alpha, i}^{*},
\end{aligned}
$$

where $\alpha=1,2$ and $i=1,2, \ldots, N_{x}-1$,

$$
\begin{align*}
& Z_{\alpha, i}^{(n)}=\left\{\begin{array}{ll}
g_{\alpha, i}-u_{\alpha, i}^{(0)}, & n=1, \\
0, & n \geqslant 2,
\end{array} \quad i=0, N_{x},\right. \tag{9}\\
& Z_{\alpha, i}^{(n)}=U_{\alpha, i}^{(n)}-U_{\alpha, i}^{(n-1)}, \quad \eta=0,1,
\end{align*}
$$

where $\mathrm{U}_{\mathrm{i}}^{(n-1)}=\left(\mathrm{U}_{1, i}^{(n-1)}, \mathrm{U}_{2, \mathrm{i}}^{(n-1)}\right), \mathcal{K}_{\alpha, i}\left(\mathrm{U}_{\alpha, i}^{(n-1)}, \mathrm{U}_{\alpha^{\prime}, i}^{(n-1)}\right)$ are the residuals of the difference equations (8) on $\mathrm{U}_{\alpha, i}^{(n-1)}$, and $\boldsymbol{0}$ is the zero column vector with $\mathrm{N}_{x}-1$ components. The matrices $\mathrm{C}_{\alpha, i}$ are the diagonal matrices $\operatorname{diag}\left(\boldsymbol{c}_{\alpha, i, 1}, \ldots, \boldsymbol{c}_{\alpha, i, N_{y}-1}\right)$ where the $\boldsymbol{c}_{\alpha}=\boldsymbol{c}_{\alpha}\left(\mathfrak{p}_{i j}\right)$ are defined in (4).
The mean-value theorem for vector-valued functions is

$$
\begin{align*}
& F_{\alpha, i}\left(\mathrm{U}_{\alpha, i}, \mathrm{U}_{\alpha^{\prime}, i}\right)-F_{\alpha, i}\left(\mathrm{~V}_{\alpha, i}, \mathrm{U}_{\alpha^{\prime}, i}\right)=\left(\mathrm{F}_{\alpha, \mathrm{i}}\left(\mathrm{Y}_{\alpha, i}, \mathrm{U}_{\alpha^{\prime}, i}\right)\right)_{\mathcal{u}_{\alpha}}\left[\mathrm{U}_{\alpha, i}-V_{\alpha, i}\right], \tag{10}\\
& F_{\alpha, i}\left(U_{\alpha, i}, U_{\alpha^{\prime}, i}\right)-F_{\alpha, i}\left(U_{\alpha, i}, V_{\alpha^{\prime}, i}\right)=\left(F_{\alpha, i}\left(U_{\alpha, i}, Y_{\alpha^{\prime}, i}\right)\right)_{u_{\alpha^{\prime}}}\left[\mathrm{U}_{\alpha^{\prime}, i}-V_{\alpha^{\prime}, \mathrm{i}}\right],
\end{align*}
$$

where the $Y_{\alpha, i}$ lie between $\mathrm{U}_{\alpha, i}$ and $V_{\alpha, i}$, and the $Y_{\alpha^{\prime}, i}$ lie between $\mathrm{U}_{\alpha^{\prime}, i}$ and $V_{\alpha^{\prime}, i}$, for $\mathfrak{i}=1,2, \ldots, N_{x}-1, \alpha^{\prime} \neq \alpha, \alpha, \alpha^{\prime}=1,2$. The partial derivatives are the diagonal matrices

$$
\begin{aligned}
& \left(F_{\alpha, i}\right)_{u_{\alpha}}=\operatorname{diag}\left(\left(f_{\alpha, i, 1}\right)_{u_{\alpha}}, \ldots,\left(f_{\alpha, i, N_{y}-1}\right)_{u_{\alpha}}\right), \\
& \left(F_{\alpha, i}\right)_{u_{\alpha^{\prime}}}=\operatorname{diag}\left(\left(f_{\alpha, i, 1}\right)_{u_{\alpha^{\prime}}}, \ldots,\left(f_{\alpha, i, N_{y}-1}\right)_{u_{\alpha^{\prime}}}\right),
\end{aligned}
$$

where $\left(f_{\alpha, i, j}\right)_{u_{\alpha}}$ and $\left(f_{\alpha, i, j}\right)_{u_{\alpha^{\prime}}}, j=1,2, \ldots, N_{y}-1$, are calculated at $Y_{\alpha, i}$ and $Y_{\alpha^{\prime}, i}$, respectively.
Theorem 1. Assume that f_{α} with $\alpha=1,2$ satisfies (4) and (5). Let $\tilde{\mathrm{U}}=$ $\left(\tilde{\mathrm{U}}_{1}, \tilde{\mathrm{U}}_{2}\right)$ and $\hat{\mathrm{U}}=\left(\mathfrak{U}_{1}, \hat{\mathrm{U}}_{2}\right)$ be ordered upper and lower solutions of (2). Then for $\mathfrak{i}=0,1, \ldots, \mathrm{~N}_{\mathrm{x}}$ the upper sequence $\left\{\tilde{\mathrm{U}}_{\alpha, \mathfrak{i}}^{(\mathfrak{n})}\right\}$ generated by (9) with $\tilde{\mathrm{U}}^{(0)}=\tilde{\mathrm{U}}$ converges monotonically from above to a maximal solution $\tilde{\mathrm{V}}$, and similarly, the lower sequence $\left\{\widehat{\mathrm{U}}_{\alpha, \mathrm{i}}^{(\mathrm{n})}\right\}$ generated by (9) with $\widehat{\mathrm{U}}^{(0)}=\widehat{\mathrm{U}}$ converges from below to a minimal solution $\widehat{\nabla}$, such that,

$$
\begin{equation*}
\hat{\mathrm{u}}_{\alpha, i}^{(n-1)} \leqslant \widehat{\mathrm{U}}_{\alpha, i}^{(n)} \leqslant \widehat{\mathrm{V}}_{\alpha, i} \leqslant \tilde{\mathrm{~V}}_{\alpha, i} \leqslant \tilde{\mathrm{u}}_{\alpha, i}^{(n)} \leqslant \tilde{\mathrm{U}}_{\alpha, i}^{(n-1)}, \tag{11}
\end{equation*}
$$

where the inequalities between vectors are in a component-wise sense, for example, $\mathrm{U}_{\alpha, \mathrm{i}} \leqslant \mathrm{V}_{\alpha, i}$ implies $\mathrm{U}_{\alpha, \mathrm{ij}} \leqslant \mathrm{V}_{\alpha, \mathrm{i} j}$ for all $\mathfrak{j}=0, \ldots, \mathrm{~N}_{\mathrm{y}}$.

Proof: Since $\tilde{\mathrm{U}}^{(0)}$ is an initial upper solution (3), from (9) we have $\left.\mathrm{A}_{\alpha, i} \tilde{\mathrm{Z}}_{\alpha, i}^{(1)}-\mathrm{L}_{\alpha, i} \tilde{\mathrm{Z}}_{\alpha, i-1}^{(1)}+\mathrm{C}_{\alpha,} \tilde{\mathrm{Z}}_{\alpha, i}^{(1)}=-\mathcal{K}_{\alpha, i} \tilde{\mathrm{U}}_{\alpha, i}^{(0)}, \tilde{\mathrm{U}}_{\alpha^{\prime}, i}^{(0)}\right), \quad i=1,2, \ldots, \mathrm{~N}_{x}-1$,
$\tilde{Z}_{\alpha, i}^{(1)} \leqslant 0, \quad i=0, N_{x}, \quad \alpha=1,2$.
Since $\mathrm{L}_{\alpha, i} \geqslant \mathrm{O}$ and $\left(\mathrm{A}_{\alpha, i}+\mathrm{C}_{\alpha, i}\right)^{-1} \geqslant \mathrm{O}$ (Corollary 3.20, [6]) where O is the $\left(N_{y}-1\right) \times\left(N_{y}-1\right)$ null matrix, for $i=1$ in (12) and $\tilde{Z}_{\alpha, 0}^{(1)} \leqslant 0$, we conclude that $\tilde{Z}_{\alpha, 1}^{(1)} \leqslant 0$. For $\mathfrak{i}=2$ in (12), using $\mathrm{L}_{\alpha, 2} \geqslant \mathrm{O}$ and $\tilde{\mathbf{Z}}_{\alpha, 1}^{(1)} \leqslant \boldsymbol{0}$, we obtain $\tilde{\mathbf{Z}}_{\alpha, 2}^{(1)} \leqslant \boldsymbol{0}$. Thus, by induction on \mathfrak{i} we prove that

$$
\begin{equation*}
\tilde{Z}_{\alpha, i}^{(1)} \leqslant 0, \quad i=0,1, \ldots, N_{x}, \quad \alpha=1,2 . \tag{13}
\end{equation*}
$$

Similarly, we can prove that

$$
\begin{equation*}
\mathcal{Z}_{\alpha, i}^{(1)} \geqslant 0, \quad i=0,1, \ldots, N_{x}, \quad \alpha=1,2 . \tag{14}
\end{equation*}
$$

We now prove that

$$
\begin{equation*}
\hat{\mathrm{u}}_{\alpha, i}^{(1)} \leqslant \tilde{\mathrm{u}}_{\alpha, i}^{(1)}, \quad i=0,1, \ldots, \mathrm{~N}_{x}, \quad \alpha=1,2 . \tag{15}
\end{equation*}
$$

Defining $\mathrm{W}_{\alpha, \mathrm{i}}^{(\mathfrak{n})}=\tilde{\mathrm{U}}_{\alpha, i}^{(n)}-\widehat{\mathrm{U}}_{\alpha, \mathrm{i}}^{(n)}$ for $\mathfrak{i}=0,1, \ldots, \mathrm{~N}_{\chi}$ and $\alpha=1,2$, from (9) with $i=1,2, \ldots, N_{x}-1$ and $\alpha=1$ we have

$$
\begin{align*}
A_{1, i} W_{1, i}^{(1)}-\mathrm{L}_{1, i} W_{1, i-1}^{(1)}+\mathrm{C}_{1, i} W_{1, i}^{(1)}= & \mathrm{C}_{1, i} W_{1, i}^{(0)}+\mathrm{R}_{1, i} W_{1, i+1}^{(0)} \tag{16}\\
& -\left[\mathrm{F}_{1, i}\left(\tilde{\mathrm{u}}_{1, i}^{(0)}, \tilde{\mathrm{u}}_{2, \mathrm{i}}^{(0)}\right)-\mathrm{F}_{1, i}\left(\hat{\mathrm{u}}_{1, i}^{(0)}, \tilde{\mathrm{u}}_{2, i}^{(0)}\right)\right] \\
& -\left[\mathrm{F}_{1, i}\left(\hat{\mathrm{u}}_{1, i}^{(0)}, \tilde{\mathrm{U}}_{2, i}^{(0)}\right)-\mathrm{F}_{1, i}\left(\left(_{1}^{(0)}\left(\hat{\mathrm{U}}_{2, i}^{(0)}\right)\right]\right.\right.
\end{align*}
$$

and for $i=0, N_{x}$ we have $W_{1, i}^{(1)}=0$. By the mean-value theorem (10), for $i=0,1, \ldots, N_{x}$ we have

$$
\begin{aligned}
& \mathrm{F}_{1, i}\left(\tilde{\mathrm{u}}_{1, i}^{(0)}, \tilde{\mathrm{u}}_{2, i}^{(0)}\right)-\mathrm{F}_{1, i}\left(\hat{\mathrm{u}}_{1, i}^{(0)}, \tilde{\mathrm{u}}_{2, i}^{(0)}\right)=\left(\mathrm{F}_{1, i}\left(\mathrm{Q}_{1, i}^{(0)}, \tilde{\mathrm{u}}_{2, i}^{(0)}\right)\right)_{\mathrm{u}_{1}}\left[\tilde{\mathrm{u}}_{1, i}^{(0)}-\hat{\mathrm{u}}_{1, i}^{(0)}\right], \\
& \mathrm{F}_{1, i}\left(\hat{\mathrm{u}}_{1, i}^{(0)}, \tilde{\mathrm{u}}_{2, i}^{(0)}\right)-\mathrm{F}_{1, i}\left(\mathrm{U}_{1, i}^{(0)}, \hat{\mathrm{u}}_{2, i}^{(0)}\right)=\left(\mathrm{F}_{1, i}\left(\hat{\mathrm{u}}_{1, i}^{(0)}\right), \mathrm{Q}_{2, i}^{(0)}\right)_{u_{2}}\left[\tilde{\mathrm{u}}_{2, i}^{(0)}-\hat{\mathrm{u}}_{2, i}^{(0)}\right],
\end{aligned}
$$

where $\widehat{\mathrm{U}}_{\alpha, \mathrm{i}}^{(0)} \leqslant \mathrm{Q}_{\alpha, \mathrm{i}}^{(0)} \leqslant \tilde{\mathrm{U}}_{\alpha, \mathrm{i}}^{(0)}$ for $\alpha=1,2$, and we conclude that $\left(\mathrm{F}_{1, i}\right)_{\mathrm{u}_{1}}$ and $\left(\mathrm{F}_{1, i}\right)_{\mathrm{u}_{2}}$ satisfy (4) and (5). Now with (16) we have, for $i=1,2, \ldots, N_{x}-1$,

$$
\begin{align*}
A_{1, i} W_{1, i}^{(1)}-L_{1, i} W_{1, i-1}^{(1)}+C_{1, i} W_{1, i}^{(1)}= & \left(C_{1, i}-\left(F_{1, i}\right)_{\mathfrak{u}_{1}}\right) W_{1, i}^{(0)} \tag{17}\\
& -\left(F_{1, i}\right)_{\mathfrak{u}_{2}} W_{2, i}^{(0)}+R_{1, i} W_{1, i+1}^{(0)}
\end{align*}
$$

and $W_{1, i}^{(1)}=0$ for $i=0, N_{x}$. Now with (4) and (5), and since $W_{\alpha, i}^{(0)} \geqslant 0$ for $i=0,1, \ldots, N_{x}$ and $\alpha=1,2$, and $R_{1, i} \geqslant 0$, we obtain

$$
\begin{align*}
& A_{1, i} W_{1, i}^{(1)}+C_{1, i} W_{1, i}^{(1)} \geqslant L_{1, i} W_{1, i-1}^{(1)}, \quad i=1,2, \ldots, N_{x}-1 \tag{18}\\
& W_{1, i}^{(1)}=0, \quad i=0, N_{x}
\end{align*}
$$

Since $\left(A_{1, i}+C_{1, i}\right)^{-1} \geqslant O$ for $i=1,2, \ldots, N_{x}-1$, with $i=1$ in (18) and $W_{1,0}^{(1)}=0$, we conclude that $W_{1,1}^{(1)} \geqslant 0$. For $\mathfrak{i}=2$ in (18), and using $L_{1,2} \geqslant 0$ and $W_{1,1}^{(1)} \geqslant 0$, we obtain $W_{1,2}^{(1)} \geqslant 0$. Thus, by induction on i we prove that

$$
W_{1, i}^{(1)} \geqslant 0, \quad i=0,1, \ldots, N_{x}
$$

By following a similar argument we can prove (15) for $\alpha=2$.
We now prove that $\tilde{\mathrm{U}}_{\alpha, i}^{(1)}$ and $\widehat{\mathrm{U}}_{\alpha, i}^{(1)}$ with $\mathfrak{i}=0,1, \ldots, \mathrm{~N}_{x}$ and $\alpha=1,2$ are upper and lower solutions to (9), respectively. From (9) with $\alpha=1$ and using the mean-value theorem (10), we conclude that for $\mathfrak{i}=1,2, \ldots, N_{x}-1$,

$$
\begin{align*}
\mathcal{K}_{1, i}\left(\tilde{\mathrm{U}}_{1, i}^{(1)}, \tilde{\mathrm{U}}_{2, i}^{(1)}\right)= & -\left(\mathrm{C}_{1, i}-\frac{\partial \mathrm{F}_{1, i}\left(\tilde{\mathrm{E}}_{1, i}^{(1)}, \tilde{\mathrm{U}}_{2, i}^{(0)}\right)}{\partial u_{1}}\right) \tilde{\mathrm{Z}}_{1, i}^{(1)}+\frac{\partial \mathrm{F}_{1, i}\left(\tilde{\mathrm{U}}_{1, i}^{(0)}, \tilde{\mathrm{E}}_{2, i}^{(1)}\right)}{\partial \mathrm{u}_{2}} \tilde{\mathrm{Z}}_{2, i}^{(1)} \\
& -\mathrm{R}_{1, i} \tilde{\mathrm{Z}}_{1, i+1}^{(1)} \tag{19}
\end{align*}
$$

where

$$
\tilde{\mathrm{U}}_{\alpha, \mathrm{i}}^{(1)} \leqslant \tilde{\mathrm{E}}_{\alpha, \mathrm{i}}^{(1)} \leqslant \tilde{\mathrm{U}}_{\alpha, \mathrm{i}}^{(0)}, \quad i=0,1, \ldots, \mathrm{~N}_{x}, \quad \alpha=1,2
$$

From (13), (14) and (15) we conclude that $\partial \mathrm{F}_{1, \mathrm{i}} / \partial \mathrm{u}_{1}$ and $\partial \mathrm{F}_{1, \mathrm{i}} / \partial u_{2}$ satisfy (4) and (5). From (4), (5), (13) and since $\mathrm{R}_{1, i} \geqslant \mathrm{O}$ we conclude that

$$
\begin{equation*}
\mathcal{K}_{1, i}\left(\tilde{\mathrm{U}}_{1, i}^{(1)}, \tilde{\mathrm{U}}_{2, \mathrm{i}}^{(1)}\right) \geqslant 0, \quad i=1,2, \ldots, \mathrm{~N}_{x}-1 \tag{20}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\mathcal{K}_{2, i}\left(\tilde{\mathrm{u}}_{2, i}^{(1)}, \tilde{\mathrm{U}}_{1, i}^{(1)}\right) \geqslant 0, \quad \mathrm{i}=1,2, \ldots, \mathrm{~N}_{x}-1 . \tag{21}
\end{equation*}
$$

From (3), (20) and (21) we conclude that $\left(\tilde{\mathrm{U}}_{1, i}^{(1)}, \tilde{\mathrm{U}}_{2, i}^{(1)}\right)$ for $\mathfrak{i}=0,1, \ldots, \mathrm{~N}_{x}$ is an upper solution to (2). In a similar manner we obtain

$$
\mathcal{K}_{1, i}\left(\mathfrak{U}_{1, i}^{(1)}, \mathfrak{U}_{2, i}^{(1)}\right) \leqslant 0, \quad \mathcal{K}_{2, i}\left(\widehat{U}_{2, i}^{(1)}, \mathfrak{U}_{1, i}^{(1)}\right) \leqslant 0, \quad i=1,2, \ldots, N_{x}-1,
$$

which means $\left(\widehat{\mathbb{U}}_{1, i}^{(1)}, \widehat{\mathcal{U}}_{2, i}^{(1)}\right)$ for $\mathfrak{i}=0,1, \ldots, \mathrm{~N}_{\mathrm{x}}$ is a lower solution to (2). By induction on n we can prove that $\left\{\tilde{\mathrm{U}}_{\alpha, i}^{(n)}\right\}$ and $\left\{\hat{\mathrm{U}}_{\alpha, i}^{(n)}\right\}$ with $\mathfrak{i}=0,1, \ldots, \mathrm{~N}_{x}$ and $\alpha=1,2$ are, respectively, monotone decreasing upper and monotone increasing lower sequences of solutions.
Now we prove that the limiting functions of the upper sequence $\left\{\tilde{\mathrm{U}}_{\alpha, \mathrm{i}}^{(\mathfrak{n})}\right\}$ and lower sequence $\left\{\hat{\mathrm{U}}_{\alpha, i}^{(n)}\right\}$ with $\mathfrak{i}=0,1, \ldots, \mathrm{~N}_{x}$ and $\alpha=1,2$ are, respectively, maximal and minimal solutions of (2). From (11) we conclude that $\lim _{\mathfrak{n} \rightarrow \infty} \tilde{\mathrm{U}}_{\alpha, i}^{(\mathfrak{n})}=\tilde{\mathrm{U}}_{\alpha, i}$ exists and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \tilde{Z}_{\alpha, i}^{(n)}=0, \quad i=0,1, \ldots, N_{x}, \quad \alpha=1,2 . \tag{22}
\end{equation*}
$$

Similar to (19), we have

$$
\begin{align*}
\mathcal{K}_{1, i}\left(\tilde{\mathrm{U}}_{1, i}^{(1)}, \tilde{\mathrm{U}}_{2, i}^{(1)}\right)= & -\left(\mathrm{C}_{1, i}-\frac{\partial \mathrm{F}_{1, i}\left(\tilde{\mathrm{E}}_{1, i}^{(n)}, \tilde{\mathrm{U}}_{2, \mathrm{i}}^{(n-1)}\right)}{\partial u_{1}}\right) \tilde{\mathrm{Z}}_{1, i}^{(n)}-\mathrm{R}_{1, i} \tilde{\mathrm{Z}}_{1, i+1}^{(n)} \tag{23}\\
& +\frac{\partial \mathrm{F}_{1, i}\left(\tilde{\mathrm{U}}_{1, i}^{(n-1)}, \tilde{\mathrm{E}}_{2, i}^{(n)}\right)}{\partial u_{2}} \tilde{\mathrm{Z}}_{2, i}^{(n)}, \quad i=1,2, \ldots, \mathrm{~N}_{x}-1,
\end{align*}
$$

where

$$
\tilde{\mathrm{U}}_{\alpha, i}^{(n)} \leqslant \tilde{\mathrm{E}}_{\alpha, i}^{(n)} \leqslant \tilde{\mathrm{U}}_{\alpha, i}^{(n-1)}, \quad i=0,1, \ldots, \mathrm{~N}_{x}, \quad \alpha=1,2 .
$$

By taking the limit of both sides of (23), and using (13), it follows that

$$
\begin{equation*}
\mathcal{K}_{1, i}\left(\tilde{\mathrm{U}}_{1, i}^{(1)}, \tilde{\mathrm{U}}_{2, i}^{(1)}\right)=0, \quad i=1,2, \ldots, \mathrm{~N}_{x}-1 . \tag{24}
\end{equation*}
$$

Similarly, we obtain

$$
\begin{equation*}
\mathcal{K}_{2, i}\left(\tilde{\mathrm{U}}_{2, \mathrm{i}}, \tilde{\mathrm{U}}_{1, \mathrm{i}}\right)=0, \quad \mathrm{i}=1,2, \ldots, \mathrm{~N}_{x}-1 . \tag{25}
\end{equation*}
$$

From (24) and (25) we conclude that ($\left.\tilde{\mathrm{U}}_{1, i}, \tilde{\mathrm{U}}_{2, i}\right)$ with $i=0,1, \ldots, \mathrm{~N}_{x}$ is a maximal solution to the nonlinear difference scheme (2). In a similar manner, we can prove that

$$
\mathcal{K}_{1, i}\left(\mathfrak{u}_{1, i}, \hat{U}_{2, i}\right)=0, \quad \mathcal{K}_{2, i}\left(\hat{u}_{2, i}, \hat{U}_{1, i}\right)=0, \quad i=1,2, \ldots, N_{x}-1,
$$

which means that $\left(\widehat{\mathbb{U}}_{1, i}, \widehat{\mathbb{U}}_{2, i}\right)$ with $\mathfrak{i}=0,1, \ldots, \mathrm{~N}_{x}$ is a minimal solution to the nonlinear difference scheme (2).

2.1 Convergent analysis

Assume that the reaction functions f_{α} with $\alpha=1,2$ satisfy the assumptions

$$
\begin{align*}
& 0<\hat{c}_{\alpha}(x, y) \leqslant\left(f_{\alpha}(x, y, u)\right)_{u_{\alpha}} \leqslant \tilde{\mathfrak{c}}_{\alpha}(x, y), \tag{26}\\
& 0 \leqslant-\left(f_{\alpha}(x, y, u)\right)_{u_{\alpha^{\prime}}} \leqslant q_{\alpha \alpha^{\prime}}(x, y), \quad \alpha^{\prime} \neq \alpha, \quad \alpha, \alpha^{\prime}=1,2, \tag{27}\\
& \rho=\min _{\alpha=1,2}\left\{\min _{(x, y) \in \tilde{\omega}} \hat{c}_{\alpha}(x, y)\right\}>0, \tag{28}\\
& 0<\beta=\max _{\alpha=1,2}\left[\max _{(x, y) \in \tilde{\omega}}\left(\frac{\mathfrak{q}_{\alpha \alpha^{\prime}}(x, y)}{\hat{c}_{\alpha}(x, y)}\right)\right]<1, \quad \alpha^{\prime} \neq \alpha, \quad \alpha, \alpha^{\prime}=1,2 . \tag{29}
\end{align*}
$$

A stopping test for the block monotone iterative methods (9) is chosen to be

$$
\begin{equation*}
\max _{\alpha=1,2}\left\|\mathcal{K}_{\alpha}\left(\mathrm{U}^{(n-1)}\right)\right\|_{\omega^{\mathrm{h}}} \leqslant \delta, \quad\left\|\mathcal{K}_{\alpha}\left(\mathrm{U}^{(\mathrm{n}-1)}\right)\right\|_{\omega^{\mathrm{h}}}=\max _{1 \leqslant i \leqslant \mathrm{~N}_{x}-1}\left|\mathrm{~K}_{\alpha, i}\left(\mathrm{U}_{i}^{(n)}\right)\right|, \tag{30}
\end{equation*}
$$

where δ is a prescribed accuracy.
The linear version of problem (2) is

$$
\begin{align*}
& \mathcal{L}_{\alpha, i j} W_{\alpha}\left(p_{i j}\right)+c_{\alpha}^{*}\left(p_{i j}\right) W_{\alpha}\left(p_{i j}\right)=\Phi_{\alpha}\left(p_{i j}\right), \quad p_{i j} \in \omega^{h}, \tag{31}\\
& W\left(p_{i j}\right)=g\left(p_{i j}\right), \quad \quad p_{i j} \in \partial \omega^{h}, \quad \alpha=1,2,
\end{align*}
$$

where $W=\left(W_{1}, W_{2}\right)$ and the c_{α}^{*} with $\alpha=1,2$ are positive bounded functions. We give an estimate of the solution to (31) in the following lemma.

Lemma 2. The solution to (31) satisfies

$$
\begin{equation*}
\left\|W_{\alpha}\right\|_{\bar{\omega}^{h}} \leqslant \max \left\{\left\|g_{\alpha}\right\|_{\partial \omega^{h}},\left\|\Phi_{\alpha} / c_{\alpha}^{*}\right\|_{\omega^{h}}\right\}, \quad \alpha=1,2, \tag{32}
\end{equation*}
$$

where

$$
\left\|g_{\alpha}\right\|_{\partial \omega^{h}}=\max _{p_{i j} \in \partial \omega^{h}}\left|g_{\alpha}\left(p_{i j}\right)\right|, \quad\left\|\frac{\Phi_{\alpha}}{\mathrm{c}_{\alpha}^{*}}\right\|_{\omega^{h}}=\max _{p_{i j} \in \omega^{h}}\left|\frac{\Phi_{\alpha}\left(p_{i j}\right)}{\mathrm{c}_{\alpha}^{*}\left(p_{i j}\right)}\right|
$$

Samarskii [5] proves this lemma.
Theorem 3. Let assumptions (26)-(29) be satisfied. Then for the sequence $\left\{\mathrm{U}^{(\mathfrak{n})}\right\}$ generated by the block monotone iterative methods (9) we have

$$
\begin{equation*}
\left\|\mathrm{u}^{\left(n_{\delta}\right)}-\mathrm{u}^{*}\right\|_{\bar{\omega}^{h}} \leqslant \frac{1}{(1-\beta) \rho} \delta \tag{33}
\end{equation*}
$$

where U^{*} is a solution of the nonlinear difference scheme (2) and n_{δ} is the minimal number of iterations subject to (30).

Proof: The existence of a solution \mathbf{U}^{*} to the nonlinear difference scheme (2) is established in Theorem 1. From (2), for $\mathrm{U}_{\alpha}^{\left(\mathfrak{n}_{\delta}\right)}$ and U_{α}^{*}, we have

$$
\begin{aligned}
& \mathcal{L}_{\alpha, i j} \mathrm{U}_{\alpha}^{\left(n_{\delta}\right)}\left(p_{i j}\right)+f_{\alpha}\left(p_{i j}, U^{\left(n_{\delta}\right)}\right)=\mathcal{K}_{\alpha, i j}\left(U_{\alpha, i j}^{\left(n_{\delta}-1\right)}, u_{\alpha^{\prime}, i j}^{\left(n_{\delta}-1\right)}\right), \quad p_{i j} \in \omega^{h} \\
& U_{\alpha, i j}^{\left(n_{\delta}\right)}\left(p_{i j}\right)=g_{\alpha}\left(p_{i j}\right), \quad p_{i j} \in \partial \omega^{h}, \quad \alpha=1,2 \\
& \mathcal{L}_{\alpha, i j} U_{\alpha}^{*}\left(p_{i j}\right)+f_{\alpha}\left(p_{i j}, U^{*}\right)=0, \quad p_{i j} \in \omega^{h} \\
& U_{\alpha}^{*}\left(p_{i j}\right)=g_{\alpha}\left(p_{i j}\right), \quad p_{i j} \in \partial \omega^{h}, \quad \alpha=1,2
\end{aligned}
$$

Letting $\mathrm{W}_{\alpha}^{(\mathrm{n})}=\mathrm{U}_{\alpha}^{(\mathrm{n})}-\mathrm{U}_{\alpha}^{*}$ for $\alpha=1,2$ and using the mean-value theorem, we obtain

$$
\begin{aligned}
& \mathcal{L}_{\alpha, i j} W_{\alpha}^{\left(n_{\delta}\right)}\left(p_{i j}\right)+\left(f_{\alpha}\left(p_{i j}, H_{\alpha}^{\left(n_{\delta}\right)}\right)\right)+u_{\alpha} W_{\alpha}^{\left(n_{\delta}\right)}\left(p_{i j}\right)= \\
& -\left(f_{\alpha}\left(p_{i j}, H_{\alpha^{\prime}}^{\left(n_{\delta}\right)}\right)\right)_{u_{\alpha^{\prime}}} W_{\alpha^{\prime}}^{\left(n_{\delta}\right)}\left(p_{i j}\right)+\mathcal{K}_{\alpha, i j}\left(u_{\alpha, i j}^{\left(n_{\delta}-1\right)}, u_{\alpha^{\prime}, i j}^{\left(n_{\delta}-1\right)}\right), \quad p_{i j} \in \omega^{h}, \\
& W_{\alpha, i j}^{\left(\mathfrak{n}_{\delta}\right)}\left(p_{i j}\right)=0, \quad p_{i j} \in \partial \omega^{h}, \quad \alpha^{\prime} \neq \alpha, \quad \alpha, \alpha^{\prime}=1,2
\end{aligned}
$$

where $\mathrm{H}_{\alpha}^{\left(\mathfrak{n}_{\delta}\right)}$ lies between $\mathrm{U}_{\alpha}^{\left(\mathfrak{n}_{\delta}\right)}$ and U_{α}^{*} for $\alpha=1,2$. Using the maximum principle (32) we conclude that

$$
\begin{aligned}
\left\|\mathrm{W}_{\alpha}^{\left(\mathrm{n}_{\delta}\right)}\right\|_{\bar{\omega}^{\mathrm{h}}} \leqslant & \left\|\mathcal{K}_{\alpha}\left(\mathrm{U}^{\left(\mathrm{n}_{\delta}\right)}\right)\left[\left(\mathrm{f}_{\alpha}\left(\mathrm{H}_{\alpha}^{(\mathfrak{n})}\right)\right)_{\mathrm{u}_{\alpha}}\right]^{-1}\right\|_{\omega^{h}} \\
& +\left\|\left(\mathrm{f}_{\alpha}\left(\mathrm{H}_{\alpha^{\prime}}^{\left(\mathfrak{n}_{\delta}\right)}\right)\right)_{u_{\alpha^{\prime}}} /\left(\mathrm{f}_{\alpha}\left(\mathrm{H}_{\alpha}^{\left(n_{\delta}\right)}\right)\right)_{\mathfrak{u}_{\alpha}}\right\|_{\omega^{\mathrm{h}}}\left\|\mathrm{~W}_{\alpha^{\prime}}^{\left(\mathfrak{n}_{\delta}\right)}\right\|_{\omega^{h}}
\end{aligned}
$$

Letting $\mathcal{W}^{\left(n_{\delta}\right)}=\max _{\alpha=1,2}\left\|\mathcal{W}_{\alpha}^{\left(n_{\delta}\right)}\right\|_{\bar{\omega}^{h}}$ and with (28) and (29) we obtain

$$
\mathcal{W}^{\left(n_{\delta}\right)} \leqslant\left(\max _{\alpha=1,2}\left\|\mathcal{K}_{\alpha}\left(U^{\left(n_{\delta}\right)}\right)\right\|\right) \rho^{-1}+\beta \mathcal{W}^{\left(n_{\delta}\right)}
$$

Now with (30) we have (33). Thus, we prove the theorem.

2.2 Uniqueness of a solution

In this section we prove uniqueness of a solution of the discrete problem (2). Theorem 4. Let assumptions (26)-(29) be satisfied. Then the nonlinear difference scheme (2) has a unique solution.

Proof: To prove the uniqueness of a solution to the nonlinear difference scheme (2), because of (11), it suffices to prove that $\widehat{\nabla}_{\alpha}=\tilde{V}_{\alpha}$, where \widehat{V}_{α} and \tilde{V}_{α} are the minimal and maximal solutions. Substituting $W_{\alpha}=\tilde{V}_{\alpha}-\widehat{V}_{\alpha}$ into (2) we have

$$
\begin{aligned}
& \mathcal{L}_{\alpha, i j} W_{\alpha}\left(p_{i j}\right)+f_{\alpha}\left(p_{i j}, \tilde{V}\right)-f_{\alpha}\left(p_{i j}, \widehat{V}\right)=0, \quad p_{i j} \in \omega^{h} \\
& W_{\alpha}\left(p_{i j}\right)=0, \quad p_{i j} \in \partial \omega^{h}, \quad \alpha=1,2
\end{aligned}
$$

Using the mean-value theorem we obtain

$$
\begin{aligned}
& \left(\mathcal{L}_{\alpha, i j}+\left(f_{\alpha}\left(p_{i j}, Q_{\alpha}\right)\right)_{u_{\alpha}}\right) W_{\alpha}\left(p_{i j}\right)=-\left(f_{\alpha}\left(p_{i j}, Q_{\alpha^{\prime}}\right)\right)_{u_{\alpha^{\prime}}} W_{\alpha^{\prime}}\left(p_{i j}\right) \\
& p_{i j} \in \omega^{h}, \quad W_{\alpha}\left(p_{i j}\right)=0, \quad p_{i j} \in \partial \omega^{h}, \quad \alpha^{\prime} \neq \alpha, \quad \alpha, \alpha^{\prime}=1,2
\end{aligned}
$$

where $\widehat{\nabla}_{\alpha}\left(p_{i j}\right) \leqslant Q_{\alpha}\left(p_{i j}\right) \leqslant \tilde{V}_{\alpha}\left(p_{i j}\right.$ for $\alpha=1,2$. Using the maximum principle (32) we conclude that

$$
\begin{aligned}
\left\|W_{\alpha}\right\|_{\tilde{\omega}^{h}} & \leqslant\left\|\left(f_{\alpha}\left(Q_{\alpha^{\prime}}\right)\right)_{\mathfrak{u}_{\alpha^{\prime}}} W_{\alpha^{\prime}}\left[\left(f_{\alpha}\left(Q_{\alpha}\right)\right)_{\mathfrak{u}_{\alpha}}\right]^{-1}\right\|_{\omega^{h}} \\
& \leqslant\left\|\left(f_{\alpha}\left(Q_{\alpha^{\prime}}\right)\right)_{\mathfrak{u}_{\alpha^{\prime}}}\left[\left(f_{\alpha}\left(Q_{\alpha}\right)\right)_{u_{\alpha}}\right]^{-1}\right\|_{\omega^{h}}\left\|W_{\alpha^{\prime}}\right\|_{\omega^{h}}
\end{aligned}
$$

Using (29) we obtain

$$
\left\|W_{\alpha}\right\|_{\Omega^{h}} \leqslant \beta\left\|W_{\alpha^{\prime}}\right\|_{\omega^{h}}
$$

Let $W=\max _{\alpha=1,2}\left\|W_{\alpha}\right\|_{\bar{\omega}^{h}}$ so that

$$
W(1-\beta) \leqslant 0
$$

From (28) and since $W \geqslant 0$ we conclude that $W=0$. Thus, we prove the theorem.
As follows from Theorems 1 and 4, under assumptions (26)-(29), the sequences of solutions generated by the block Jacobi and Gauss-Seidel methods converge to the unique solution of the nonlinear difference scheme (2).

3 Numerical experiments

As a test problem we consider the gas-liquid interaction model [3] where reaction functions are

$$
\begin{equation*}
f_{1}\left(u_{1}, u_{2}\right)=-\sigma_{1}\left(1-u_{1}\right) u_{2}, \quad f_{2}\left(u_{1}, u_{2}\right)=\sigma_{2}\left(1-u_{1}\right) u_{2} \tag{34}
\end{equation*}
$$

where $u_{1} \geqslant 0$ and $u_{2} \geqslant 0$ are concentrations of the gas and liquid, respectively, and $\sigma_{\alpha}=$ const >0 with $\alpha=1,2$ are reaction rates.

We choose $\varepsilon_{1}=1, \varepsilon_{2}=0.1$, the boundary conditions $g_{1}(x, y)=0$ and $g_{2}(x, y)=1,(x, y) \in \partial \omega$ in (1), and $\sigma_{\alpha}=1$ for $\alpha=1,2$. The pairs $\left(\tilde{\mathrm{U}}_{1}, \tilde{\mathrm{U}}_{2}\right)=(1,1)$ and $\left(\widehat{\mathrm{U}}_{1}, \widehat{\mathrm{U}}_{2}\right)=(0,0)$ are ordered upper and lower solutions. From (34) we conclude that

$$
\begin{aligned}
& \left(f_{1}\right)_{u_{1}}=u_{2} \leqslant 1, \quad-\left(f_{1}\right)_{u_{2}}=1-u_{1} \geqslant 0 \\
& \left(f_{2}\right)_{u_{2}}=1-u_{1} \leqslant 1, \quad-\left(f_{2}\right)_{\mathfrak{u}_{1}}=u_{2} \geqslant 0
\end{aligned}
$$

Table 1: Numerical error and order of convergence of the nonlinear scheme (2).

N	8	16	32	64	128
E	0.0071	0.0017	4.47×10^{-4}	1.06×10^{-4}	2.13×10^{-5}
γ	1.97	2.01	2.06	2.32	

Table 2: Number of iterations and CPU time for the block methods.

N	8	16	32	64	128
	block Jacobi method				
\# of iterations	101	397	1577	6299	25189
CPU (s)	0.02	0.11	0.91	14.17	225.99
	block Gauss-Seidel method				
\# of iterations	51	180	762	3084	12370
CPU (s)	0.01	0.06	0.47	7.34	117.62

It follows that f_{α} with $\alpha=1,2$ satisfy (4) with $c_{\alpha}=1$ and (5). Since the exact solution of the test problem is unavailable, we define the numerical error and the order of convergence of the numerical solution, respectively, as

$$
\mathrm{E}(\mathrm{~N})=\max _{\alpha=1,2}\left[\max _{\mathfrak{p}_{\mathrm{i} j} \in \bar{\omega}_{h}}\left|\mathrm{U}_{\alpha}^{\left(\mathfrak{n}_{\delta}\right)}\left(\mathrm{p}_{\mathrm{ij}}\right)-\mathrm{U}_{\alpha}^{\left(\mathfrak{n}_{\delta}\right) \mathrm{r}}\left(\mathrm{p}_{\mathrm{ij}}\right)\right|\right], \quad \gamma(\mathrm{N})=\log _{2}\left(\frac{\mathrm{E}(\mathrm{~N})}{\mathrm{E}(2 \mathrm{~N})}\right),
$$

where $\mathrm{U}_{\alpha}^{\left(\mathfrak{n}_{\delta}\right)}\left(\mathrm{p}_{\mathrm{ij}}\right)$ with $\alpha=1,2$ are the approximate solutions generated by (9), n_{δ} is the minimal number of iterations subject to (30), and $U_{\alpha}^{\left(n_{\delta}\right) r}\left(p_{i j}\right)$ with $\alpha=1,2$ are reference solutions with number of mesh points $N=512$.

Table 1 presents the error $E(N)$ and order of convergence $\gamma(N)$ for different values of $\mathrm{N}_{x}=\mathrm{N}_{\mathrm{y}}=\mathrm{N}$. This table indicates that the numerical solution of the nonlinear difference scheme (2) converges to the reference solution with second-order accuracy. The numerical and reference solutions are calculated by the block Jacobi or Gauss-Seidel methods. Tables 2 and 3 show that the block Gauss-Seidel method converges faster than the block Jacobi method, and the block monotone methods (Table 2) converge faster than the corresponding monotone Gauss-Seidel and Jacobi methods (Table 3).

Table 3: Number of iterations and CPU time for the Jacobi and Gauss-Seidel methods.

N	8	16	32	64	128
	Jacobi method				
\# of iterations	190	771	3092	12378	49520
CPU (s)	0.08	0.11	1.09	16.15	261.28
	Gauss-Seidel method				
\# of iterations	97	388	1548	6191	24762
CPU (s)	0.12	0.40	0.53	8.58	141.37

References

[1] Boglaev, I., A block monotone domain decomposition algorithm for a semilinear convection-diffusion problem, J. Comput. Appl. Math., 173(2005), 259-277. doi:10.1016/j.cam.2004.03.011 C80
[2] Boglaev, I., Monotone iterates for solving systems of semilinear elliptic equations and applications, ANZIAM J, Proceedings of the 8th Biennial Engineering Mathematics and Applications Conference, EMAC-2007, 49(2008), C591-C608. doi:10.21914/anziamj.v49i0.311 C80
[3] Pao, C. V., Nonlinear parabolic and elliptic equations, Springer-Verlag (1992). doi:10.1007/978-1-4615-3034-3 C80, C91
[4] Pao, C. V., Block monotone iterative methods for numerical solutions of nonlinear elliptic equations, Numer. Math., 72(1995), 239-262. doi:10.1007/s002110050168 C80
[5] Samarskii, A., The theory of difference schemes, CRC Press (2001). https://www.crcpress.com/The-Theory-of-Difference-Schemes/ Samarskii/p/book/9780824704681 C89
[6] Varga, R. S., Matrix iterative analysis, Springer-Verlag (2000). doi:10.1007/978-3-642-05156-2 C85

Author addresses

1. M. Al-Sultani, School of Fundamental Sciences, Massey University, Palmerston North, New Zealand; Faculty of Education for Pure Sciences, University of Kerbala, Kerbala, Iraq.
mailto:m.al-sultani@massey.ac.nz
2. I. Boglaev, School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
mailto:i.boglaev@massey.ac.nz
