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A spectral method to the stochastic Stokes
equations on the sphere
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Abstract

We construct numerical solutions to the stochastic Stokes equations
on the unit sphere with additive noise. By characterising the noise as a
tangential vector field, the weak formulation is derived and a spectral
method is used to obtain a numerical solution. The theory is illustrated
through a numerical experiment.
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1 Introduction

A Stokes flow is a fluid flow characterised by strong viscous forces and a lack
of advection (e.g. lava flow). Accordingly, the Stokes equations are used to
model a Stokes flow and generally involve a set of parameters determined
by the type of fluid, initial/boundary conditions and domain geometry. In
many systems these parameters contain a random fluctuation that cannot be
described exhaustively. An effective approach to circumvent this problem is the
inclusion of stochastic effects in the Stokes equations to form a deterministic
part and a perturbed part represented by random noise.

This work considers the stochastic Stokes problem which has been subject to
active research in recent years due to the development of efficient stochastic
computational methods [2, 5]. Further, the stochastic Stokes problem is
directly applicable to optimal control in fluid dynamics and, more specifically,
the movement of microorganisms and the flow of lava in unknown terrain [9,
3, 1]. The stochastic Stokes equations on the unit sphere S in R3 are{

− ν∆u+ gradp = f+ σW in S ,
divu = 0 ,

(1)
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where u = (uθ,uφ) is a tangential vector field on the surface of the unit
sphere, grad is the surface gradient, ∆ is the Laplace–de Rham operator,
ν > 0 is the viscosity, p is the pressure, f ∈ L2(S) is the external force, σ is a
positive constant and W is some vector valued random noise on the sphere.

For this problem, a spatial discretization is applied via a spectral method
based on divergence free vector spherical harmonics [6]. This is done by first
using the Hodge decomposition theorem to define the random tangential
vector field on the sphere in terms of curl free and divergence free components.
Following this, a bilinear form is defined and a spectral Galerkin method is
used to obtain a numerical divergent free solution. In Section 5, a numerical
experiment is conducted on a test case for illustration of the solution and
convergence.

2 Preliminaries

To allow for a better understanding of the mathematical methods and numer-
ical simulations presented in this work, this first section gives a preliminary
overview of relevant operators on the unit sphere and the orthonormal basis
used throughout.

2.1 Differential operators on S

For the two-dimensional unit sphere S ⊂ R3 , the spherical co-ordinate
parametrization

x = (sin θ cosφ, sin θ sinφ, cos θ) , 0 6 θ 6 π , 0 6 φ < 2π ,

is employed with the associated orthonormal basis for the tangent space TS

eθ = (cos θ cosφ, cos θ sinφ,− sin θ) ,
eφ = (− sinφ, cosφ, 0) ,
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in order to express the tangential vector field on the surface of the unit
sphere S as

u = (uθ,uφ) = uθeθ + uφeφ .

With this convention, the surface divergence and gradient are defined as

divu =
1

sin θ
∂

∂θ
(sin θuθ) +

1

sin θ
∂uφ

∂φ
,

grad f =
∂f

∂θ
eθ +

1

sin θ
∂f

∂φ
eφ .

Since the outward unit normal on the unit sphere at x is itself, the curl
operator is decomposed into tangential and normal components. That is,
the curl of a normal vector field w = wx and a tangential vector field
v = v1e

θ + v2e
φ are, respectively [7],

curlw = −x× gradw ,
curlx v = −x div(x× v) .

The surface diffusion operator ∆ (also known as the Laplace–de Rham opera-
tor) acting on an arbitrary tangential vector field v is defined as

∆v = grad div v− curl curlx v . (2)

If the Laplace–de Rham operator is restricted to tangential divergence-free
vector fields on the sphere, then it reduces to the Stokes operator

A = curl curlx . (3)

The eigenvalues λ` and the corresponding eigenvectors of the Stokes operator A
for positive integers ` are [10]

λ` = `(`+ 1) ,

z`,m = λ
−1/2
` curl Y`,m(θ,φ) , m = −`, . . . , ` , (4)

where Y`,m is the spherical harmonic function of degree ` and order m. For
all ` = 1, 2, . . . and m = −`, . . . , ` ,

div z`,m = λ
−1/2
` div curl Y`,m = 0 . (5)
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2.2 Orthogonality of z`,m

The space of square integrable scalar functions and vector fields on S are
defined by L2(S) and L2(TS), respectively, with inner products

〈v1, v2〉 = 〈v1, v2〉L2(S) =

∫
S
v1v̄2 dS , v1, v2 ∈ L2(S) .

〈v1, v2〉 = 〈v1, v2〉L2(TS) =
∫
S
v1 · v2 dS , v1, v2 ∈ L2(TS) .

The norms for the spaces L2(S) and L2(TS) are denoted by ‖ · ‖. In the
Sobolev spaces Hµ(S) and Hµ(TS) with µ > 0 the norms in the scalar and
vector valued function are denoted by ‖ · ‖Hµ(S) and ‖ · ‖Hµ(TS) , respectively.
In particular,

‖v‖2Hµ(TS) = ‖v‖2 +
∥∥(−∆)µ/2v∥∥2 . (6)

Throughout this article, we identify a normal vector field w with a scalar
field w via w = xw . Hence for two normal vector fields w1 and w2,

〈w1,w2〉 := 〈w1,w2〉L2(S) , w1 = xw1 , w2 = xw2 , w1,w2 ∈ L2(S) .
(7)

Using these identities [7]

〈grad v , v〉L2(TS) = − 〈v, div v〉L2(S) ,
〈curl curlxw , z〉L2(TS) = 〈curlxw , curlx z〉L2(S) .

(8)

The vector fields {z`,m : ` = 1, 2, . . . ;m = −`, . . . , `} form an orthonormal set
in L2(TS) since

〈z`,m, zL,M〉 =
〈
λ
−1/2
` curl Y`,m , λ−1/2L curl YL,M

〉
=
〈
λ
−1/2
` curlx curl Y`,m , λ−1/2L YL,M

〉
=
〈
λ
−1/2
` (−∆Y`,m) , λ

−1/2
L YL,M

〉
=
〈
λ
−1/2
` λ`Y`,m , λ−1/2L YL,M

〉
= δ`,Lδm,M ,
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where the orthogonality of the spherical harmonic function was utilized to
obtain the Kronecker deltas.

3 Random tangential vector fields on S

Let (Ω,F,P) be a probability space and TS be the space of tangential vector
fields on the sphere surface S. A measurable function S×Ω→ TS is called a
real random vector field on the sphere.

The Hodge decomposition theorem states that any smooth tangential field on S
can be decomposed into the sum of curl free and divergence free components [4].
That is,

C∞(TS) = C∞(TS; grad)⊕ C∞(TS; curl) , (9)

where
C∞(TS; grad) = {gradψ : ψ ∈ C∞(S)} ,
C∞(TS; curl) = {curlψ : ψ ∈ C∞(S)} .

(10)

A random tangential vector field on the sphere is thus written as

W(x,ω) =

∞∑
`=1

∑̀
m=−`

a`,m(ω)y`,m(x) + b`,m(ω)z`,m(x) , (11)

where a`,m and b`,m are random coefficients, z`,m is the divergence free vector
field defined in (4) and the curl free vector field is

y`,m = λ
−1/2
` grad Y`,m .

The Fourier truncation of W to degree N is defined by

WN(x,ω) =

N∑
`=1

∑̀
m=−`

[a`,m(ω)y`,m(x) + b`,m(ω)z`,m(x)] , (12)

and this is used when implementing the numerical experiments.
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4 Weak formulation

For µ > 0 , let C∞,µ(TS; curl) denote the closure of C∞(TS; curl) in the Hµ(TS)
norm. The space [7]

V = closure of C∞(TS; curl) in H1(TS) (13)

is crucial for uncoupling the unknown velocity and pressure terms in (1).

Using the identities in (8) with the divergent free definition of V , we obtain the
bounded, symmetric, and coercive bilinear weak formulation of the spherical
surface Stokes equations

ν 〈curlx u , curlx v〉 = 〈f+ σW , v〉 , v ∈ V . (14)

The existence and uniqueness of the solution u ∈ V of (14) follows from the
Lax–Milgram theorem, for all f ∈ V∗ the adjoint of V .

For a spectral Galerkin method we define

VN := span {z`,m : ` = 1, 2, . . . ,N} .

The Ritz–Galerkin approximation problem for (14) is to find uN ∈ VN so that

ν 〈curlx uN, curlx v〉 = 〈f+ σW , v〉 , v ∈ VN . (15)

Since uN ∈ VN , let

uN =

N∑
`=1

∑̀
m=−`

c`,mz`,m ,

and choosing v = zLM as the basis functions in (15) gives

N∑
`=1

∑
|m|6`

νc`,m 〈curlx z`,m , curlx zL,M〉 = 〈f+ σW , zLM〉 . (16)
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From the properties of the Laplace–de Rham operator in (2) and the identities
in (8),

〈curlx z`,m , curlx zL,M〉 = 〈curl curlx z`,m , zL.M〉
= λ` 〈z`,m , zL,M〉 ,

and since {z`,m} is an orthonormal basis, from (16) we obtain

c`,m =
1

νλ`
〈f+ σW , z`,m〉 . (17)

5 Numerical experiments

The spectral Galerkin method on the Stokes equations with additive noise
is now demonstrated through a test case vector field. This is done by first
utilizing the derivatives of the spherical harmonic functions Y`,m to obtain the
orthonormal basis {z`,m} in L2(TS). The solution of the test case uN is then
obtained and illustrated in the parameter space. Lastly, the convergence of
the truncated solution is shown graphically.

5.1 Computing the orthonormal Basis

The orthonormal set {z`,m} in L2(TS) is defined as

z`,m = λ
−1/2
`

(
1

sin θ
∂Y`,m

∂φ
eθ −

∂Y`,m

∂θ
eφ
)
, m = −`, . . . , ` , (18)

where Y`,m is the spherical harmonic function of degree ` and order m. Var-
shalovich [10] defines the derivatives of the spherical harmonic function in
the definition of z`,m.
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5.2 Test Case

In solving equation (1) we use a test case adapted from Narcowich et al. [8]
to examine the accuracy of the spectral method and the convergence of the
solution. Here, u ∈ V ∩ Hα(TS) with α > 2 is an infinitely smooth vector
field motivated by the atmospheric low pressure flow field at a point xc with
θc = π/4 , φc = 0 . A stream function ψ ∈ Hα+1(S) is used to define the
divergence free vector field

u(x) =
1

sin θ
∂ψ

∂φ
eθ −

∂ψ

∂θ
eφ

which satisfies u ∈ V ∩Hα(TS) .

The stream function is chosen to be

ψ(x) = 2
3
sin15 θ−ψxc(x) , ψxc(x) = exp

(
−[8ρxc(x)]

2
)
,

where ρxc(x) = arccos(x·xc) is the geodesic distance from xc to x. The forcing
field f is chosen so that the divergent free vector field u is the unique solution
of the Stokes equations (1) with ν = 1 . Substituting this into equation (17)
with the truncated noise WN yields the simplified expression

c`,m =
1

λ`
〈f, z`,m〉+

σ

λ`
b`,m , (19)

with ` = 1, 2, . . . , m = −`, . . . , ` and b`,m chosen to be random variables with
a standard normal distribution of mean zero and variance `−β for β > 2 , to
ensure the noise has finite variance. To compute the inner product in (19), a
Gauss–Legendre quadrature is used, that is

〈f, z`,m〉 =
∫
S

f · z`,m dS ≈
M∑
j=1

wj
π

M

2M∑
k=1

f(θj,φk) · z`,m(θj,φk) ,

where M is the number of quadrature points and wj are the Gauss–Legendre
weights. For each value N, the average mean square error is computed over a
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Figure 1: A divergence free random vector field on the unit sphere.

sample of 100 random solutions uN, that is

E‖uN − u‖ ≈ 1

100

100∑
j=1

‖u(j)
N − u(j)‖ .

Figure 1 illustrates a tangential vector field on the unit sphere. The quiver
arrows are normalised to be of equal length to highlight the divergence
free nature of the vector field. Consequently the low pressure cells are less
prominent in the upper and lower middle of the image due to other weaker
cells in the light aqua regions. The color bar gives the normalized value of
the tangential vector field at different positions.

Figure 2 plots the average mean square error between the exact solution
and its approximation at each truncation level N. As N increases, the error
converges to machine error.
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Figure 2: The average mean square errors in L2 are plotted in increments of
five from N = 20 to N = 100 .

6 Conclusion

A spectral method based on divergence free vector spherical harmonics was
applied to obtain numerical solutions to the stochastic Stokes equation. This
approach is distinguished from existing methods by treating the stochastic
Stokes equations on the sphere, defining the random noise as a random
tangential vector field on the sphere and solving the resultant bilinear weak
form via the spectral Galerkin method. A numerical experiment was conducted
to illustrate the solution as a divergent free vector field on the sphere surface S.
The average error between the exact solution and numerical solutions was
shown to converge to machine error with increasing N.
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