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Groundwater response to tidal forcing
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Abstract

The groundwater response to tidal forcing in a phreatic aquifer
is modelled using a perturbation approach for the case of a shallow
beach. The principal features of the groundwater response, namely
the super-elevation of the water table, attenuation of the forcing wave
and the asymmetry and phase shift in the fluctuations, is investigated
and compared with earlier solutions. These results demonstrate the
importance of correctly including the beach slope effects to prevent
the exaggeration of observed features for shallow beaches. A general
solution method is presented, which provides an efficient method for
obtaining higher order solutions.
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1 Introduction

The tidal forcing of phreatic aquifers induces a wave that propagates through
the aquifer. As the near shore region of a coastal aquifer is an area of high bi-
ological and mechanical activity, a thorough understanding of the interaction
of tides and the groundwater table is desirable. Specifically, tidal forcing has
been shown to influence beach erosion and aggregation, saltwater intrusion
and chemical transport in addition to the groundwater table fluctuations [1].

Philip [3] modelled the groundwater response to tidal forcing for a vertical
beach and found that the water table is elevated above mean sea level even in
the absence of recharge. Nielsen [2] further investigated the inland overheight
by considering the effects of a sloping beach via a perturbation solution. His
result, given to second order, demonstrated that a sloping beach enhanced
the inland overheight as well as the asymmetry in the water table fluctuations
and their shift from the tidal signature.

Nielsen employed the Boussinesq equation to model the groundwater re-
sponse, which arises from the Dupuit approximation of dominating horizontal
flow. Numerical modelling by Ataie-Ashtiani et al. [1] indicates that under
certain conditions vertical flows are significant. The effect of vertical flows
on the groundwater response was investigated by Teo et al. [4] using pertur-
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bation expansions under the assumptions of a shallow aquifer and small tidal
amplitude. Although Teo et al. and Nielsen gave their solutions for beach
slopes in the range 0–π/2, the nature of the perturbation expansions is such
that for sufficiently shallow beaches the solutions exaggerate the observed
features and indicate unphysical behaviour. Thus, we are motivated to con-
sider the groundwater response to tidal forcing across a shallow beach. Teo et
al.’s solution method is extended with an appropriate re-arrangement of the
order equations to account for a shallow beach. A general solution method,
which was automated in Mathematica, is presented and this approach enables
the solution to be continued to higher order than previously reported.

2 The model

A homogeneous, isotropic and rigid porous medium with a phreatic surface is
connected to a tidal surface water body through a sloping beach. The beach-
face, which is of constant slope, shares the same porous medium properties
as the aquifer. For simplicity, we assume that the surface and groundwater
are of the same constant density and that the water table is connected to
the tide at the beach-face. As shown in Figure 1, the base of the aquifer
is horizontal and impervious, extends semi-infinitely inland, and is invariant
along the beach-front. In addition, we assume that a sharp interface exists
between the water table and the unsaturated porous medium above, that is,
we neglect capillarity.

Coupling of the Darcy flux equation with the continuity equation for
a saturated porous medium with constant density gives rise to Laplace’s
equation in the potential head, φ = z+ p/ρg , namely,

∇2φ = 0 , (1)

where p is the pore-water pressure, ρ is the density, and g is gravitational
acceleration. Equation (1) is to be solved subject to appropriate boundary
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Figure 1: Geometry of the aquifer. Laplace’s equation is solved in the
region bounded by the horizontal extent of the tide xb(t), the base of the
aquifer z = 0 , and the water table z = h(x, t). The horizontal axis is chosen
such that x = 0 corresponds to the low tide line.

conditions. The surface conditions, which are applied at the unknown surface
of the water table, h(x, t), arise from the requirement that the pore-water
pressure is atmospheric on the water table, and the assumption that particles
once on the surface remain there. Then

φ = h

neφt = K
(
φ2

x + φ2
z

)
− Kφz

}
z = h(x, t) , (2)

where ne is the effective porosity and K is the hydraulic conductivity. Given
the above constraints, the impervious aquifer base means that

φz = 0 on z = 0 , (3)

and the height of the water table far inland is an as yet unknown constant
so

φx → 0 as x→∞ . (4)
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For a sinusoidally varying tide at a beach of constant slope β the horizon-
tal extent of the shoreline is xb(t) = (D+A cosωt) cotβ , recalling that x = 0

corresponds to the low tide line (refer to Figure 1). Under the assumption
that the water table is coupled to the tide at the shoreline, which prevents
the formation of a seepage face, then the seaward boundary condition is

h(xb(t), t) = D+A cosωt , (5)

where D is the undisturbed depth of the aquifer, A is the tidal amplitude,
and ω is the tidal frequency.

In the vertical direction we choose to scale by the undisturbed aquifer
depth D, and in the horizontal direction by the characteristic length of de-
cay [2]

L =

√
2KD

neω
, (6)

with time scaled by the inverse tidal frequency 1/ω. We therefore set

x ′ =
x

L
, z ′ =

z

D
, h ′ =

h

D
, φ ′ =

φ

D
and t ′ = tω , (7)

to obtain the system of equations in dimensionless form.

The seaward and surface boundary conditions are enforced at time de-
pendent locations, moreover, the position of the water table, h(x, t), must be
obtained as part of the solution. We therefore transform the equations onto
a fixed domain by setting

x ′′ = x ′ − x ′b(t
′) = x ′ − αε cotβ (8a)

and

z ′′ =
z ′

h ′(x ′, t ′)
, (8b)

where α = A/D is the small tidal amplitude parameter and ε = D/L is the
shallow aquifer parameter.
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On dropping the dash notation the system of equations is

φzz + ε2
(
h2φxx − 2zhhxφxz + z2h2

xφzz

)
= 0 , (9)

h(0, t) = 1+ α cos(ωt) , (10)

φx = 0 as x→∞ , (11)

φz = 0 on z = 0 , (12)

φ = h on z = 1 , (13)

2ε2
[
φth

2 + h2φxαε cotβ sin t− hφz (ht + hxαε cotβ sin t)
]

− ε2 (hφx − zhxφz)
2
− φ2

z + hφz = 0 on z = 1 , (14)

which is to be solved on the domain 0 ≤ x <∞ , 0 ≤ z ≤ 1 with t ≥ 0 .

The application of the boundary fixing transformations (8) introduces the
beach slope, β, into the surface boundary condition explicitly through the
term αε cotβ sin t , as seen in (14). For β ∼ O(1), this term is O(αε); how-
ever, for sufficiently shallow beaches cotβ becomes large and it is necessary
to consider the magnitude of this term.

For β ∼ O(ε), we make the approximation

β = β0ε , (15)

thus cotβ ≈ (β0ε)
−1 − 1

3
β0ε , and the surface boundary equation (14) be-

comes

2ε2

[
φth

2 + h2φxα sin t

(
1

β0

−
β0ε

2

3

)
− hφz

(
ht + hxα sin t

(
1

β0

−
β0ε

2

3

))]
− ε2 (hφx − zhxφz)

2
− φ2

z + hφz = 0 on z = 1 . (16)
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3 Solution method

The nonlinear nature of the system of equations (9)–(13) with (16) is such
that an exact solution is not possible. Teo et al. [4] considered hydraulic
conductivities in the range 50–1000m/day, with aquifer depths of 5–10m
and tidal amplitudes of 1–2m, while Nielsen [2] considered tidal amplitudes
and aquifer depths on the order of 0.5m, with hydraulic conductivities on
the order of a few mm/day. Given a soil porosity in the range 0.2–0.4 and
considering semi-diurnal and diurnal tides, these values correspond to pa-
rameter values in the range 0.1 to 0.6. We therefore seek solutions for the
case ε� 1 and α� 1 .

A series solution for φ(x, z, t) in terms of h(x, t) is obtained by setting

φ(x, z, t) =

∞∑
i=0

εiφi(x, z, t) and h(x, t) =

∞∑
i=0

εihi(x, t) . (17)

Solution of (9) with (17) subject to the aquifer base condition (12) and the
surface condition (13) at the first three orders gives

φ0(x, z, t) = h0(x, t) , φ1(x, z, t) = h1(x, t) (18)

and

φ2(x, z, t) = (1− z2)

(
h0h1h0xx +

1

2
h2

0h1x

)
− h2(x, t) . (19)

Application of the expressions in φi(x, z, t) to the surface condition (14) gives
rise to a series of partial differential equations in hi(x, t). The leading order
equation is

2h0t − h2
0x − h0h0xx +

2α sin t

β0

h0x = 0 , (20)

which is of nonlinear parabolic type. At higher orders the general form is

hit −
1

2
h0hixx +

2hih0t

h0
− h0xhix −

3

2
hih0xx
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−
hih

2
0x

h0

+
hixα sin t

β0

+
2hih0xα sin t

β0h0

= rhs (21)

where the forcing term rhs is a function of the lower order solutions hi−1(x, t),
hi−2(x, t), . . . , h0(x, t). The system of equations (21), with the exception
of (20), are variable coefficient, forced, linear equations that cannot be solved
exactly.

As we are predominantly interested in small α, we seek series solutions
to (20) and (21) setting

hi(x, t) =

∞∑
j=0

αjhi,j(x, t) . (22)

Application of (22) to (20) and (21) results in a series of partial differential
equations of the form

2hit − hixx = f(x, t) , (23)

where f(x, t) is a known function of the earlier terms. The series of par-
tial differential equations (23) is solved order by order subject to the tidal
boundary condition (10) and inland condition (11).

While the solution to the first few orders of (23) can be obtained quickly
using any in-built solver package, such as Mathematica’s DSolve command,
at higher orders this becomes cumbersome and takes increasingly long times.
We therefore use the known structure of (23) to improve the efficiency of this
procedure. Since f(x, t) in (23) is of the form∑

n

(
a0 + a1x+ · · ·+ akx

k
)
ebx+cein(t−x) (24)

with constants ak, b and c, we determine a general solution to (23) to within
a number of constants, and then solve for the unknown constants by sub-
stituting (24) into (23). This method improved the efficiency and memory
requirements by 80%.
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4 Results

To fourth order, the water table height is

h(x, t) =

4∑
i

4∑
j

αjεihi,j(x, t) , i+ j ≤ 4 , (25)

and the error associated with this solution is the greatest ofO(εiαj), i+j = 5 .
To second order the solution is

h(x, t) = 1+ αe−x cos(t− x) +
α2

4

{
1+

2

β0

− e−2x

− 2e−2x cos 2(t− x) + 2e−
√

2x cos(2t−
√
2x)

+
e
√

2x

β0

[
cos(2t+

√
2x) + cos(2t−

√
2x)

+ 2 sin(2t+
√
2x) − 2 sin(2t−

√
2x)
]

−
2e−x

β0

[
cos x+ sin x+ cos(2t− x) − sin(2t− x)

]}
. (26)

The principal features contained in this solution are an exponentially
decaying wave, which shifts from the tidal signature as it propagates through
the aquifer, the elevation of the water table above mean sea level and the
asymmetry in the local fluctuations of the water table. We note that a
minor error occurs in Teo et al.’s solution at their Equation (17). As this
error propagates to their conclusion, we refer here to the corrected Teo et
al. solution without further comment.

The constant term in the solution (26), α2/4, indicates that the water
table is elevated above mean sea level. This elevation of the water table is
known as the inland overheight, which was first observed by Philip [3]. To
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fourth order, the inland overheight is

1

4
α2 −

1

32
α4 +

1

2
α2β−1

0 −

(
6+ 5

√
2

80β0

+
2+
√
2

16β2
0

+
−1+

√
2

4β3
0

)
, (27)

which agrees with Philip’s solution to first order. The inland overheight is
a result of the greater effective transmissivity of the aquifer at high tide.
During the rising tide, water flows landward at a faster rate than it flows
seaward during the ebb tide, which is balanced by an elevation in the water
table; thus a greater tidal amplitude and hydraulic conductivity, which arises
implicitly through β0, see (15), enhances the extent of the overheight, while a
deeper aquifer mitigates this effect. A sloping beach enhances the overheight
as water can infiltrate into the aquifer vertically during the rising tide, but
is only able to seep from the aquifer horizontally during the ebb [2].

Discussion of the overheight is generally confined to the inland overheight,
the elevation of the water table far from the beach; however, the mean water
table height is neither the undisturbed aquifer depth or the inland overheight,
but rather increases from mean sea level through the intermediate region
of the aquifer before relaxing to the inland overheight. Comparison of the
mean water table heights given by (26), and Teo et al. and Nielsen’s solutions
indicates that failure to include the beach slope effects at the correct order
results in the mean water table height being over-predicted. Nielsen’s solution
elicits a constant mean water table height due to the use of a matching
condition at the seaward boundary, which applied the tidal condition at a
fixed location.

The difference between the inland overheight and the mean water table
height indicates an asymmetry in the local fluctuations of the water table,
which arises as the porous medium fills faster than it drains. The asymme-
try in the water table fluctuations increases with distance into the aquifer, as
shown in Figure 2, and with a greater tidal amplitude or hydraulic conduc-
tivity. As with the inland overheight, a deeper aquifer mitigates these effects.
The sloping beach also gives rise to a greater asymmetry in the water table
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fluctuations due to the migration of the forcing point inland during the ris-
ing tide in addition to the horizontal infiltration of water over this period.
The slight elevation in the water table corresponding to low tide in Teo et
al.’s solution, and the fast drainage of the aquifer in Nielsen’s solution are
not expected, and indicate that these solutions have probably been applied
outside of their range of validity.

The asymmetry in the fluctuations is investigated via harmonic analysis.
Decomposing the solution (26) as h(x, t) =

∑
mCm(x)eimx, where Cm(x) is

the coefficient associated with the mth complex Fourier function, the mag-
nitude of the mth harmonic is 2

√
CmC−m.

The primary harmonic was not significantly influenced by the beach slope,
whereas the secondary harmonic increases in magnitude with a shallower
beach—particularly through the intermediate region of the beach. While
the primary harmonic is dominant, and is the slowest to decay, the ratio
of the primary and secondary harmonics decreases with distance into the
aquifer indicating that the influence of higher order harmonics also increases
with distance into the aquifer. This is seen through the increase in the
asymmetry of the water table fluctuations at locations further from the beach,
see Figure 2.

5 Discussion

The groundwater response to tidal forcing across a sloping beach has been
described in terms of a shallow aquifer and a small tidal amplitude parameter
together with the inclination of the beach to the horizontal. It has been
shown how the re-ordering of the governing equations with respect to the
beach slope provides for an improved description of the water table response
for sufficiently shallow beaches, as use of the non-corrected equations can give
misleading information about the water table dynamics. This fourth order
perturbation solution confirms that shallower beaches enhance the features of
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Figure 2: Local fluctuations of the water table over two tidal periods as
given by (26) (black/solid), Teo et al.’s solution (blue/dashed) and Nielsen’s
solution (red/dotted). The variation is given at (a) the beach-face, x = 0 ,
and at x = 1.5 and x = 3 and (b) x = 3 , with a beach-slope of β = π/8 and
α = 0.35 and ε = 0.5 .
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the aquifer: the inland overheight and super-elevation of the water table, the
asymmetry of the local fluctuations, and the shift of the fluctuations away
from the tidal signature.

One important component of this work has been the analysis of the role
played by higher order harmonics. The relative magnitude of higher har-
monics to lower order harmonics increases with distance into the aquifer for
shallow beaches, which is evident in the increased asymmetry in the local
water table fluctuations further from the shoreline, and results from the im-
balance in the pore drainage. In addition to causing the asymmetry in the
water table fluctuations, the imbalance in the pore drainage results in an
elevation of the mean water table height, as well as the height of the water
table far inland.

Comparison of these features with previous solutions demonstrates that
failure to account for the growth of cotβ with shallow beaches in the per-
turbation solution exaggerates the water table response and give misleading
information. The use of the known structure of the solution to automate the
solution procedure has enabled the solution to be presented to higher orders
than previously.

The current work is specific to shallow beaches. It is of interest to con-
sider the groundwater table response for the full range of beach slopes. The
above method has been employed to examine the results of tidal forcing at
beaches of both steep and shallow slope, the results of which will be reported
elsewhere.
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