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Abstract

Numerical simulations are used to investigate the entrainment for
forced turbulent fountains over a range of Reynolds numbers and Froude
numbers, with ranges based on the fountain source properties. Other
fountain properties such as height and width are also examined to pro-
vide information on the general structure of the fountains. The results
show that the fountains have minimal Reynolds number dependency,
while they have a strong linear relation with the Froude number for the
cases considered in this study. The entrainment coefficient is obtained
as well as scaling constants for height and width in terms of the Froude
number.
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1 Introduction

Fountains occur when a dense fluid is projected upwards into a less dense
fluid. The upward discharge of the dense fluid is opposed by buoyancy, and
further limited by the entrainment from the ambient fluid. The fountain
structure is described as a rising fluid surrounded by falling fluid, with a
crown region at the top where the rising fluid turns to become falling fluid,
as shown in Figure 1(a). Fountains are widely found in nature and industrial
applications such as volcanic eruptions, atmospheric convection, building
ventilation, refueling fuel tanks, and air conditioning systems, where the
overall behaviour of the flow or device are strongly influenced by the fountain
properties [2, 6, 10]. In turbulent fountains, fluid entrainment α plays a key
role in controlling the properties of the fountain, such as penetration height,
width and mixing.

The control parameters of fountains are typically two non-dimensional num-
bers, the Froude number Fr and the Reynolds number Re, where the former
characterises the fountain flow as weak or forced while the latter characterises
the flow as laminar or turbulent. For Froude numbers greater than three,
the fountain is forced [8] and for Reynolds numbers greater than 2000, the
fountain is classified as fully turbulent [16].

Scaling analysis shows that, for forced fountains, the average fountain height Zm
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is expected to scale with the Froude number, Zm/Ro ≈ CFr , where Ro is the
source radius and C is a constant [2, 3, 5, 8, 11, 14, 16, 17]. This relation has
been numerically and experimentally validated by a number of studies over
the Froude number range 3 6 Fr 6 300 , although the ‘constant’ C varies
from 2.1 to 3.06 [2, 5, 11, 14, 16].

The first fountain models considered only the starting fountain, that is,
before the crown and falling flow regions develop, and this fountain was
treated as a negatively buoyant jet. It was assumed the entrainment of the
ambient fluid into the negatively buoyant jet was the same as that for the
neutrally buoyant jet, where the entrainment is defined as the radial velocity
normalised by axial velocity. The model predicted a linear Fr dependency
for the penetration height [1, 8, 12]. This technique was later extended to
estimate the penetration height of fully developed fountains by including a
similar entrainment assumption for the ambient fluid to the falling fluid and
the falling fluid to the rising fluid [3], with the results validated against the
experimental results of [11]. However, numerical results suggested the simple
self-similar entrainment relations may not be suitable for fountain flows [15].
Laboratory measurements of total fountain entrainment suggested that in
the forced turbulent regime the total entrainment QE has a linear relation
with the Froude number, QE/Qo ≈ 0.71Fr , where Qo is the fountain source
volume flux [4].

The overall behaviour, penetration height, and width of the fountain are
strongly dependent on the entrainment of the ambient fluid into the fountain
and the mixing within the fountain. As noted above, current models are
based on plume and jet type entrainment laws with constant entrainment
coefficients. Little direct measurement of the entrainment and internal struc-
ture of fountains have been conducted, either experimentally or via direct
numerical simulation. In this study a numerical investigation of forced turbu-
lent fountain flow is performed to quantify the entrainment of the ambient
fluid into the fountain and to provide scaling relations for the fountain height
and width.
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Figure 1: (a) A schematic of the fountain structure; (b) the domain.

2 Numerical method

The flow is simulated by solving the Navier–Stokes equations for incompress-
ible flow, with the Oberbeck–Boussinesq approximation for buoyancy [7]. The
dimensionless continuity, momentum, and scalar transport equations are
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= 0 , (1)
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where Re = VoRo/ν is the Reynolds number, Pr = ν/αk is the Prandtl num-
ber, and Fr = Vo/(goR0)0.5 is the Froude number, all based on the dimensional
source properties; velocity Vo, temperature θo, radius Ro, kinematic viscos-
ity ν, thermal diffusivity αk and reduced gravity go = g(ρo−ρ∞)/ρ∞ , with ρ



2 Numerical method C160

the density. The o and ∞ subscripts indicate properties at the fountain source
and in the ambient fluid, respectively. The dimensional velocity Ui, temper-
ature θ, pressure P, time T and length Xi are normalised as ui = Ui/Vo ,
φ = (θ − θ∞)/(θo − θ∞) , p = P/(ρV2o) , t = TVo/Ro and xi = Xi/Ro . The
i subscript for ui represents the three components of velocity u1 = u , u2 = v ,
u3 = w and for xi represents the three dimensions in space x1 = x , x2 = y ,
x3 = z , with y vertical (Figure 1(b)). The Einstein summation convention
applies for terms with repeated indices, and δi2 is the Kronecker delta.

The governing equations are discretised by implementing the finite-volume
approach on a non-staggered Cartesian grid [13] with standard second order
discretisations for all spatial terms other than scalar advectionn for which the
ultra-quick scheme is used [9]. The transport equations are integrated in
time using the second-order Adams–Bashforth scheme for the advective terms
and the Crank–Nicolson scheme for the viscous and diffusive terms, with the
pressure-correction approach used to enforce continuity and obtain pressure.
A Jacobi solver is used to invert the transport equations, and a generalized
minimum residual (gmres) method to invert the pressure correction equation,
both with Stone’s strongly implicit procedure (sip) pre-conditioning.

As illustrated in Figure 1(b), the computational domain is a rectangular
box where the top and side boundaries are open with zero normal-gradient
boundary conditions on the velocity and scalar fields. The bottom boundary
is a wall with no-slip and adiabatic conditions with normal velocity and
temperature, v = 1 and φ = −1 , except for the circular fountain source of
radius r = 1 .

The numerical results were obtained on computer clusters for fully developed
forced turbulent fountain flows with Reynolds number 2000 6 Re 6 3500

and Froude number 5 6 Fr 6 24 . Table 1 gives the details of each of
the simulation parameters for each run. Table 1 also gives the grid sizes
∆x and ∆y in the central region of the domain, and all z parameters are equal
to x parameters. Outside the central region the grid is stretched towards
the boundaries. The time step used for all simulations was set to ensure
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Table 1: ∆x = ∆z , ∆y are the finest grid size in the central region of the
domain and Lx = Lz,Ly , Nx = Nz,Ny are the domain size and number of
nodes in each direction, respectively, Np is the number of central processing
unit (cpu) cores and tcpu and ts are the cpu hours and simulation times in
non-dimensional units, respectively.

Fr Re Pr ∆x,∆y Lx,Ly Nx,Ny Np tcpu ts
5 2500 1 0.04, 0.08 30, 30 236, 265 24 4332 4000

5 3000 1 0.04, 0.08 30, 30 236, 265 24 4332 4000

8 2500 1 0.04, 0.08 30, 40 266, 350 32 9272 5000

8 3000 1 0.04, 0.08 30, 40 266, 350 32 9272 5000

10 3500 1 0.04, 0.08 50, 50 300, 400 32 12488 4000

12 2000 1 0.04, 0.08 50, 60 330, 503 96 18624 4000

12 2750 1 0.04, 0.08 50, 60 330, 503 96 18624 4000

12 3500 1 0.04, 0.08 50, 60 330, 503 96 18624 4000

14 3000 1 0.04, 0.08 60, 80 364, 550 96 24456 5000

16 3500 1 0.04, 0.08 60, 80 394, 675 96 43320 6000

20 3000 1 0.04, 0.08 60, 110 436, 800 96 81216 7000

24 3000 1 0.04, 0.08 80, 120 486, 975 96 106752 8000

the Courant number lay between 0.25 and 0.35. Grid dependency tests were
performed for the highest Reynolds number resulting in a variation of 2% in
fountain height between the fine and coarser grids. The domain is sufficiently
large to ensure it does not influence the flow.

3 Results

Results were obtained for a range of fully developed fountains as given in
Table 1. Figure 1 shows the domain and a single instantaneous temperature
contour demonstrating the complex and highly unsteady nature of the fountain
flow. The time average results were obtained over a sufficiently long interval
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after the flow reached full development. Time average quantities are shown
with an overbar.

Figures 2, 3 and 4 plot the φ̄ = −0.025 temperature contour and v̄ = 0

velocity contour. The time-averaged temperature and velocity contours are
axisymmetric and plotted against the radius r. The φ̄ = −0.025 temperature
contour is defined to be the boundary between the falling flow and the ambient
fluid, whereas the v̄ = 0 velocity contour is the boundary between the rising
flow and falling flow. Figures 2(a) and 3(a) show that the fountain height and
width have a strong dependence on Fr, with both increasing with increasing Fr.
Figures 2(b) and 3(b) show that the dependence is well approximated by
a linear scaling with Fr. Figure 4 shows that for Fr = 12 there are only
relatively small differences between Re = 2000, 2750, 3500 at the boundary
of the rising flow and falling flow as well as the boundary of the falling flow
and the ambient fluid.

Linear regression is used to obtain the best linear fit for the mean fountain
penetration height and width, as shown in Figure 5. The height h is measured
vertically on the vertical centreline from the source to the point at which
φ̄ = −0.025 . The width b is measured radially from the vertical centreline
at the mid-height of the fountain to where φ̄ = −0.025 . The measurements
are normalised by the source radius Ro and plotted against Fr, giving

h

Ro
= 2.4891Fr and

b

Ro
= 0.8824Fr . (4)

Figure 6(a) plots the time-averaged entrainment rate ᾱ against y for entrain-
ment between the falling flow and ambient fluid on the φ̄ = −0.025 contour.
The entrainment ᾱ = ūr/V where ūr is the time-averaged radial velocity at
φ̄ = −0.025 and the bulk falling flow velocity

V =

(
2

∫ r2
r1

v̄y
2r dr

)(
2

∫ r2
r1

v̄yr dr

)−1

,

with r1 the radius of the boundary between rising flow and falling flow and r2
the radius of the φ̄ = −0.025 contour. Away from the crown and base regions,
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Figure 2: General structure of forced turbulent fountains for Fr = 5, 8, 14, 20
and Re = 3000 at: (a) the φ̄ = −0.025 temperature contour at the boundary
between the falling flow and the ambient fluid; and (b) the φ̄ = −0.025
temperature contour scaling with the Froude number.
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Figure 3: General structure of forced turbulent fountains for Fr = 5, 8, 14, 20
and Re = 3000 at (a) the v̄ = 0 velocity contour at the boundary between
the rising flow and the falling flow; and (b) the v̄ = 0 velocity contour scaling
with the Froude number.
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Figure 4: General structure of forced turbulent fountains for Re =
2000, 2750, 3500 and Fr = 12 at: (a) the φ̄ = −0.025 temperature con-
tour at the boundary between the falling flow and the ambient fluid; and (b)
the v̄ = 0 velocity contour at the boundary between the rising flow and the
falling flow.
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Figure 5: Time-averaged scales of forced turbulent fountains with the Froude
number for: (a) the mean penetration height scaling with Froude number;
and (b) the width scaling with the Froude number. Here, R2 is the linear fit
regression coefficient.
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Figure 6: Time-averaged entrainment rate of forced turbulent fountains with
Fr = 5, 8, 14, 20 and Re = 3000 : (a) at the boundary between the falling flow
and the ambient fluid; and (b) with y scaled by the Froude number.
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ᾱ is seen to vary between approximately 0.1 and 0.2. With the vertical axis
scaled by Fr, in Figure 6(b), the entrainment is seen to be consistent in the
region 0.6 . y/Fr . 2.1 , which represents approximately 60% of the scaled
height. As before, for Re = 2000, 2750, 3500 and Fr = 12 , the dependency of
the entrainment rate on Re is minimal (not shown for brevity).

4 Conclusions

Fountains have a rising central flow, a falling outer flow, and a crown region
in which the rising flow transitions to the falling flow. The boundary between
the rising and falling flows is the zero time-averaged vertical velocity contour.
The total fountain height and width was determined by the φ̄ = −0.025
temperature contour. The Fr variation of the fountain height and width were
shown to be well approximated by linear relations obtained by regression.
The scaling for the fountain height corresponds well with previous results [2,
5, 11, 14, 16].

The rate of entrainment from the ambient into the falling, outer, fountain
fluid was obtained as the radial velocity at the φ̄ = −0.025 contour over the
bulk vertical velocity in the falling flow region. When the vertical coordinate
is scaled with Fr, as for the fountain height, the entrainment coefficients for
the different Fr are approximately the same in the region 0.6 . y/Fr . 2.1 .
Over this region ᾱ lies approximately between 0.1 and 0.2, compared to the
values of αj ≈ 0.075 for a jet and αp ≈ 0.11 for a plume.
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