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Abstract

Dye-sensitized solar cells have generated diverse research directions,
which include a mathematical model based on the diffusion of electrons
in the conduction band of a nano-porous semiconductor (traditionally
TiO2). We solve the nonlinear diffusion equation under its boundary
conditions, as stated by Anta et al. [J. Phys. Chem. B 110 (2006) pp
5372–5378]. We employ a standard finite difference method, a fourth
order finite difference method scheme and a Runge–Kutta scheme. We
calculate errors and evaluate the utility of each scheme as it applies to
this boundary value problem.
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1 Introduction

O’Regan and Grätzel’s foundational 1991 paper [5] introduced dye sensitized
solar cells (dsscs) as a viable alternative for renewable energy. By replacing
costly silicon semiconductors found in typical solar cells with nanoporous
semiconductors and photosensitive dye, dsscs are able to provide sunlight-
induced power at a significantly lower cost.

A dssc is comprised of four primary materials: the photosensitive dye,
the nanoporous semiconductor, the counter electrode, and the electrolyte
couple. During operation, the photosensitive dye donates its electrons to the
nanoporous semiconductor in a sunlight-induced process known as electron
injection [5]. Injected electrons power a load before being reintroduced into the
dssc by a counter electrode. Finally, the electrolyte couple returns electrons
from the counter electrode to the photosensitive dye by a redox reaction.
dsscs are also subject to loss mechanisms (known as recombination), such as
regeneration of the photosensitive dye or electrolyte couple by the nanoporous
semiconductor. Recombination reactions harm the electron generation process
by preventing electrons from leaving the dssc to power a load as intended.
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In 1994, Södergren et al. [6] proposed a linear ordinary differential equation
(ode) for modelling the conduction band electron density in the nanoporous
semiconductor of a dssc. This was the first mathematical model to specifically
model dsscs, as previous models had been inherited from other solar cells.
Later, Cao et al. [2] proposed a partial differential equation (pde) by adding
time-dependence to create a diffusion-like model. A nonlinear variant of the
pde emerged in 2006 [1], built to capture the role of nonlinear diffusion in
dsscs [3].

Mathematical model

Given a dssc of thickness d, the conduction band electron density n(x, t) at
depth x ∈ [0,d] and time t > 0 satisfies [1]

∂n

∂t
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∂

∂x

[(
n(x, t)
neq

)β
∂n
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)β
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(1)
where D0 is the diffusion coefficient, neq is the dark equilibrium electron
density, ϕ0 is the incident photon flux, α is the absorption coefficient of the
ruthenium (II) dye, kR is the recombination coefficient and β is the diffusion
order. This pde is subject to the boundary conditions

n(0, t) = neq and
∂n

∂x
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x=d

= 0 , (2)

and the initial condition
n(x, 0) = neq . (3)

We non-dimensionalise the model with the same parameter scalings as Cao
et al. [2]:
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. (4)
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Table 1: Parameter values for dssc model.
Parameter Value
µ 25

ν 5

ξ 10−5

The non-dimensional equation is therefore

∂n̄

∂t̄
=
∂

∂x̄

(
n̄β
∂n̄

∂x̄

)
+ µe−νx̄ − ξn̄β (n̄− 1) , (5)

where our non-dimensional parameters are µ = d2ϕ0/D0neq , ν = αd and
ξ = kRd

2/D0 . Dropping the bar notation, the boundary and initial conditions
become

n(x, 0) = 1 , n(0, t) = 1 ,
∂n

∂x

∣∣∣∣
x=1

= 0 .

The values for the non-dimensional parameters are given in Table 1 and are
based on data provided by Anta et al. [1] and Gacemi et al. [4]. Unless
otherwise stated, all numerical results computed in this article use the data
in Table 1.

In this article, we numerically solve pde (5) for β = 1 . If β = 0 , then the
pde collapses to a linear equation that is readily solved analytically. Figure 1
plots nexact, the exact solution of (5) for β = 0 , over times t ∈ [0, 1] . To
verify the effectiveness of our numerical simulations, we compare the numerical
solution for the β = 0 special case with the exact solution. For the nonlinear
case β = 1 , we compute the error using the numerical solution under an
extremely fine grid to represent a pseudo-exact solution.
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Figure 1: Solution nexact of (5) against x and t for the β = 0 special case.

2 Finite difference method

For our first scheme, we devise a standard forward time central space finite
difference method (fdm). We begin with a spatial discretisation of [0, 1]
into Nx nodes and a temporal discretisation [0, T ] into Nt nodes, where T is
the final simulation time. In this article, ui,j represents the numerical solution
of (1) at x = (j − 1)∆x and t = (i − 1)∆t , where ∆x = 1/(Nx − 1) and
∆t = T/(Nt − 1) .

The boundary conditions specify the nodes on the boundary of [0, 1] , so
we approximate the spatial derivatives at node (i, j) for i ∈ {1, · · · ,Nt} and
j ∈ {1, · · · ,Nx} by(

∂n

∂x

)
i,j
≈ ui,j+1 − ui,j−1

2∆x
,
(
∂2n

∂x2

)
i,j
≈ ui,j+1 − 2ui,j + ui,j−1

∆x2
.
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To account for the boundary condition at x = 1 , for every time step i we
introduce a ‘ghost node’ at x = 1+ ∆x defined by

ui,Nx+1 = ui,Nx−1 ,

so that the central difference approximation of ∂n/∂x at x = 1 agrees with the
boundary condition. We approximate the temporal derivative at node (i, j)
by a standard forward difference(

∂n

∂t

)
i,j
≈ ui+1,j − ui,j

∆t
.

Results Figure 2 plots the numerical solution of equation (1) for β = 1

and for T = 0.004 and T = 1 . As the system evolves from the constant
equilibrium of the initial condition, we see the exponential source term
sharply increases the electron density near x = 0 . The resulting peak is an
interaction between the diffusion coefficient, the exponential source term and
the boundary condition at x = 0 .

The finite difference method presents consistently small errors, despite having
the lowest order of the numerical schemes considered in this article. We
attribute this to the extreme magnitude of the higher order spatial and
temporal derivatives of the exact solution, which suggest that higher order
schemes may encounter regularity issues.

3 Fourth order spatial discretisation

For our second scheme, we increase stability by estimating the spatial deriva-
tives with five points, in contrast to the two used in the central difference
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Figure 2: Numerical solution n(x, t) of (1) against x and t, for β = 1 under
the fdm scheme, for (top) T = 0.004 and (bottom) T = 1 .
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scheme. Letting c = 1/∆x , for j ∈ {3, ...,Nx − 2} we set up estimates(
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where the coefficients have been determined so that the first spatial derivative
of quartic polynomials is estimated exactly. Since this scheme is incompatible
with j = 2 and Nx − 1 , we set up modified schemes for these nodes:(
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Finally, we use a five-point scheme to estimate ∂n(1, t)/∂x , once again
choosing coefficients so that this spatial derivative at x = 1 is estimated exactly
for quartic polynomials. Given the boundary condition ∂n(1, t)/∂x = 0 , we
rearrange to obtain

ui,Nx
= −

3

25
ui,Nx−4 +

16

25
ui,Nx−3 −

36

25
ui,Nx−2 +

48

25
ui,Nx−1 .

Results Figure 3 plots the numerical solution of equation (1) for β = 1

and for T = 0.004 and T = 1 .
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Figure 3: Numerical solution n(x, t) of (1) against x and t for β = 1 under
the fourth order space scheme and forward Euler time for (top) T = 0.004
and (bottom) T = 1 .
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4 Runge–Kutta Method

For our final scheme, we consider a fourth order Runge–Kutta (rk4) iteration
under the same fourth order spatial discretisation used in Section 3. This
results in a system of Nx odes dependent on t, which we solve with a method
of lines approach and Runge–Kutta iteration in time. We choose a fourth
order spatial discretisation so that our numerical scheme is fourth order in
both space and time.

Results Figure 4 plots the numerical solution of equation (1) for β = 1

and for T = 0.004 and T = 1 .

Concerning errors, given a sufficiently fine grid we obtain smaller errors than
for the standard fdm scheme. Table 2 shows that grid refinement gives a
substantial improvement initially, and then substantially less improvement
with even finer grids.

5 Comparison of results

To compare each numerical scheme, we run simulations on progressively finer
grids. From these computations we interpolate solutions on even finer grids
and verify that the error is vanishing with increased grid resolution. That is,
given a coarse grid with numerical solution uc and an interpolated fine-grid
solution uf, the error ε is

ε = ‖uf − uc‖
√
∆x∆t , (6)

where ∆x and ∆t are calculated in the coarse grid. The norms are calculated
with matlab’s usual norm function. For all error computations we simulate
on t ∈ [0, 0.004] to reduce calculation time. Table 2 gives the errors for
different numbers of spatial nodes and Nt = 100Nx for each grid.
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Figure 4: Numerical solution n(x, t) of (1) against x and t, for β = 1 under
the Runge–Kutta scheme for (top) T = 0.004 and (bottom) T = 1 .
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Table 2: Errors for the standard fdm and fourth order Runge–Kutta (rk4)
scheme under grid refinement (β = 1).

Nx = 25 Nx = 50 Nx = 100 Nx = 200 Nx = 400
fdm 1.43× 10−5 3.55× 10−6 8.53× 10−7 1.95× 10−7 3.67× 10−8
rk4 5.90× 10−6 5.70× 10−7 1.12× 10−7 2.78× 10−8 2.32× 10−8

Table 3: Parameter values for dssc model provided by Cao et al. [2].
Parameter Value
µ 1000

ν 10

ξ 0

Figure 5 shows that the Runge–Kutta scheme faces a regularity complication
as the temporal derivatives of the exact solution for the β = 0 special case
are of the order 1010 and 1012 in magnitude. We compute these derivatives
for the special case β = 0 so we can use the exact solution rather than one
of the numerical schemes. Consequently, we do not obtain the fourth order
convergence shown in Table 2 for the fourth order schemes that the theory
would otherwise predict. Furthermore, we find an explanation as to why the
standard fdm scheme performs so well, as it is unaffected by these derivatives.

Figure 6 provides a direct comparison of a simulation by Cao et al. [2, Fig.
6(a)] with our equivalent numerical solution. For this simulation, we use the
same data as Cao et al. [2] specified in Table 3. Both simulations are over
t ∈ [0, 1] . In our simulation we used 100 spatial nodes and 200 000 temporal
nodes.
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Figure 5: Plots of (top) ∂3n(x, 0)/∂t3 and (bottom) ∂5n(x, 0)/∂t5 for the
exact solution (β = 0) of (5).
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Figure 6: Numerical solution of (1) using data from Table 3 for comparison
with a simulation by Cao et al. [2, Fig. 6(a)].

6 Conclusion

We have devised three numerical schemes for numerically solving a partial
differential equation arising from the modelling of dye-sensitised solar cells.
All numerical schemes present extremely small errors given a sufficient grid
size (showing errors of the order of 10−8 with a 400× 40 000 grid). We obtain
second order convergence for the standard fdm scheme, as expected, but no
significant improvement in the convergence rate for the other schemes. The
discrepancy is explained by the exact solution of the linear special case of (1).
Finally, we find our schemes compare favourably with simulations by other
authors.
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