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Three ways to compute multiport inertance
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Abstract

The immediate impulse-response of a confined incompressible fluid
is characterized by inertance. For a vessel with one inlet and outlet, this
is a single quantity; for multiple ports the generalization is a singular
reciprocal inertance matrix which acts on the port-impulses to give
the corresponding inflows. The reciprocal inertance coefficients are
defined by the boundary fluxes of potential flows. Green’s identity
converts these boundary fluxes to domain integrals of kinetic energy.
For a system discretized with finite elements, a third method is pro-
posed for computing reciprocal inertance coefficients which requires
only the stiffness matrix and the solution vectors and no numerical
differentiation.

doi:10.21914/anziamj.v60i0.14058 gives this article, c© Austral. Mathematical Soc.
2019. Published August 26, 2019, as part of the Proceedings of the 18th Biennial Compu-
tational Techniques and Applications Conference. issn 1445-8810. (Print two pages per
sheet of paper.) Copies of this article must not be made otherwise available on the internet;
instead link directly to the doi for this article.

http://dx.doi.org/10.21914/anziamj.v60i0.14058


Contents C141

Contents
1 Introduction C141

2 Theory of hydraulic inertance C143
2.1 Short-time impulse-response of incompressible fluid . . . . C143
2.2 The multiport boundary value problem . . . . . . . . . . . C144
2.3 Reciprocal inertance matrix . . . . . . . . . . . . . . . . . C144
2.4 Two ways to calculate reciprocal inertance . . . . . . . . . C145
2.5 Properties of the reciprocal inertance matrix . . . . . . . . C146

3 Discretization C146
3.1 A third way to compute reciprocal inertance . . . . . . . . C147

4 Implementation C148
4.1 Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . C148
4.2 Example: Asai’s prototype bubble jet . . . . . . . . . . . . C149
4.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . C149

5 Conclusion C151

1 Introduction

Microhydraulic devices often need analyses other than those traditional in
industrial fluid mechanics. Many have a complicated topology; for example,
the single-pass ink-jet printing chips discussed by Mallinson et al. [15] each
have 640 nozzles per colour, and eleven chips are plumbed together across
a page. Another characteristic of a microhydraulic device is small size; this
keeps the Reynolds number low and the flow laminar or even creeping. The
combination of hydraulic linearity and topological complexity makes circuit
theory appealing [17]. The use of circuit theory is widespread, building on
earlier work in fluidics [7], acoustics [18], and general systems theories [19].
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Going back further, this approach can be seen as the reverse of the old
‘waterpipe’ analogy in which the ‘flow’ of electrons was likened to ‘current’ [11,
e.g.].

The basic idea of microhydraulic circuit theory is that pressure is to volume
as voltage is to charge, since for steady laminar flow along a straight pipe,
Poiseuille’s law is formally analogous to Ohm’s law in defining a linear
resistance. This analogy is extended to transients by considering the response
to a step in the applied pressure difference. Although the exact solution [3,
§4.3] shows that the system has infinitely many degrees of freedom each with
its own time-constant, the initial rate of change of flow-rate is proportional
to the step in pressure, thereby defining a hydraulic analogue of inductance
called inertance [18, 1].

Many circuit models are limited to ‘two-terminal elements’ [19], following
Kirchhoff’s laws and graph theory; however, lumped networks have been
generalized to n-port components with the resistance and inertance of a two-
ended branch replaced by matrices of order n [12]. The need for multiport
components is characteristic of microhydraulics. Electrical circuits are more
easily designed than microhydraulic systems to physically resemble graphs.
The pressure drops in larger-scale hydraulic networks are conventionally
classified into ‘major losses’ proportional to the length of long pipes and
‘minor losses’ induced by turns and junctions, with the major dominating the
minor [20, §18]. However, microhydraulic systems intrinsically have many
turns and junctions in a restricted space and so are less well modelled by
graphs with pressures at ports and pressure drops along branches.

A simple example involving multiport inertance is a single ink-jet consisting
of a nozzle through which the ink is ejected, an opening for refill, and an
actuator [16]. In designing such a device, one wants to know how much of the
work done by the actuator is wasted due to fluid travelling backwards up the
supply line and how the backward inertance affects the forward flow. The
circuit of Beasley [4] has three ports (supply, actuator, and nozzle) connected
by two branches in the configuration supply–actuator–nozzle. The pressure is
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specified at the actuator as a function of time and the nozzle and supply are at
fixed pressures; however, in such a circuit, the flow forward from actuator to
nozzle depends only on the inertance of the branch between them and not on
that back to the supply. Therefore the naïve two-terminal branched network
model provides no answer to questions concerning backwards inertance.

2 Theory of hydraulic inertance

Whereas resistance is defined by the steady state, inertance characterizes the
immediate response to a pressure impulse in an incompressible fluid. Here
the classical theory of impulsively driven flow [14, §11, 3, §6.10] is recalled
and the coefficients defined.

2.1 Short-time impulse-response of incompressible
fluid

The velocity u and pressure p of a fluid of constant density ρ and viscosity µ
are governed by the Navier–Stokes equations

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u , (1)

∇ · u = 0 . (2)

If forces on the boundary contain an impulsive part proportional to Dirac’s δ(t),
then for short times the pressure throughout must have the form p(x, t) ∼
Π(x)δ(t) , where Π is the pressure impulse. From the integral of (1) over a
time which tends to zero, it follows that if the velocity is to remain finite, it
must have the form u(x, t) ∼ U(x)H(t) +O(t) , where H is Heaviside’s step
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function and U and Π satisfy [14, eq. 11.2, 3, eq. 6.10.2]

ρU ∼ −∇Π , (3)
∇ ·U = 0 . (4)

2.2 The multiport boundary value problem

Consider the initial-boundary value problem for (1) in which the stagnant fluid
u = 0 in Ω is contained within a rigid surface Γ = ∂Ω pierced by n ‘ports’
Γ0, Γ1, . . . , Γn−1 at which a spatially uniform temporally varying pressure is
specified and the flow is constrained to be normal to the surface. In particular,
consider the response of the fluid to a set of impulsive pressures p|Γk = Πkδ(t)
for k = 0, 1, . . . ,n− 1 . The rest of the boundary, ∂Ω\ ∪j Γj , is constituted
of impermeable walls.

Since the impulsive pressure Π|Γk = Πk is assumed uniform over each of the
n ports, the space of flows is spanned by the n solutions obtained when each
of the ports in turn gets a nonzero impulse while the rest are left at constant
pressure; that is, for k = 0, 1, . . . ,n− 1 ,

−∇2Π(k) = 0 in Ω , (5)

Π(k) = δjkΠk on Γj with j = 0, 1, . . . ,n− 1 , (6)

n · ∇Π(k) = 0 on ∂Ω\ ∪j Γj . (7)

2.3 Reciprocal inertance matrix

The multiport reciprocal inertance coefficients are defined as the volumetric
flow-rate through one port due to a unit impulse at another; that is,

sij ≡ −
1

Πj

(
n,U(j)

)
Γi
≡ −

1

Πj

∫
Γi

n ·U(j) dΓ , (8)
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where n is the outward unit normal, U(j) is derived from Π(j) by (3), and
the (·, ·) denotes the inner product of two fields over the whole or part of the
domain or boundary (here, as indicated by the subscript, just the ith port).

Given the application of n different impulses at each of the ports, the com-
bined impulsively generated velocity is U =

∑
jU

(j) and the corresponding
volumetric flow-rate through the ith port is

(n,U)Γi =

n−1∑
j=0

sijΠj . (9)

Section 2.5 explains the need for reciprocal inertance.

2.4 Two ways to calculate reciprocal inertance

The reciprocal inertance coefficients are obtained from (8) and (3) as

sij ≡
1

ρΠj

(
n,∇Π(j)

)
Γi
, (10)

as shown by Asai [1, eq. 17] for the special case n = 2 where the inertance
is s−100 . Integrating by parts over the domain, the scalar product of two of the
solutions for velocity is(

U(i),U(j)
)
Ω
=
1

ρ

(
∇Π(i),U(j)

)
Ω

(11)

=
1

ρ

(
Π(i)n,U(j)

)
∂Ω

−
1

ρ

(
Π(i),∇ ·U(j)

)
Ω
. (12)

Simplifying using (4), (7), and (6) and introducing the definition (8) yields a
second formula for the coefficients:

sij =
ρ
(
U(i),U(j)

)
Ω

ΠiΠj
≡
ρ
∫
Ω
U(i) ·U(j) dΩ

ΠiΠj
, (13)

which is equivalent to identifying 1
2

∑
ijΠisijΠj with the total kinetic energy.
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2.5 Properties of the reciprocal inertance matrix

Symmetry of the reciprocal inertance matrix follows directly from (13). It
follows from the maximum principle [14, §37] that the diagonal must be
positive and the off-diagonals negative.

Besides the maximum principle, other classical theorems on potential flow
imply other properties: that the columns [14, eq. 36.2] and rows [14, §40γ] of
the matrix sum to zero, physically corresponding to incompressibility and the
irrelevance of absolute pressure-impulse as opposed to differences in pressure-
impulse, respectively. Thus the matrix is singular, which is why we work with
reciprocal inertance rather than inertance.

3 Discretization

The Galerkin finite element method is convenient for its generality in handling
complicated industrial geometry, but it is chosen in particular here since it
leads to a novel third way to compute reciprocal inertance.

Assume that the impulsive pressures can be expanded in some basis

Π(k)(x) =

N−1∑
j=0

φj(x)Π
(k)
j , (14)

then the Galerkin equations are

N−1∑
j=0

aijΠ
(k)
j =

N−1∑
j=0

n−1∑
p=0

(φin,∇φj)Γp Π
(k)
j (15)

where

aij ≡ (∇φi,∇φj)Ω . (16)
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For a nodal basis with the subset D of indices corresponding to ports, the
Galerkin equations (15) are partitioned; for degrees of freedom i ∈ D , the
equations are ignored since Π(k)

i is prescribed by (6); for i 6∈ D , the right-hand
sides vanish since φi = 0 on the ports. Thus

N−1∑
j=0

aijΠ
(k)
j = 0, i 6∈ D (17)∑

j 6∈D

aijΠ
(k)
j = −

∑
j∈D

aijΠ
(k)
j , i 6∈ D, (18)

which is a standard way of handling ‘essential’ (Dirichlet) conditions [6, §8.4.2].

3.1 A third way to compute reciprocal inertance

Given the expansion (14), equation (13) is discretized as

sij =

∑
rsΠ

(i)
r arsΠ

(j)
s

ρΠiΠj
. (19)

This is particularly convenient if a nodal Galerkin method is used since
then the coefficients (16) will be already available and (19) involves just a
matrix-vector product and a scalar product. Unlike (10) or (13), no numerical
differentiation of the potential is required to obtain to obtain the velocity.

As both aij and sij are coefficients which convert pressure-impulses into flow-
rates, (19) is interpreted as a Kron reduction [5], condensing the finite element
stiffness matrix of the finite element nodes to the reciprocal inertance matrix
of the ports of the vessel. This works by eliminating the nodes on the walls
and interior of the finite element mesh and combining those on the ports
into a single supernode for each port, giving a lumped model relating the
pressure-impulses on the ports to the volumetric influx through them.
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4 Implementation

4.1 Pseudocode

The method was implemented with scikit-fem [10], a Python library written
at a high enough level for the listings to also serve as pseudocode.

Given a mesh of a vessel in which the ports are marked, for example, from
Gmsh [8], one selects a basis (14), for example the P1 basis of piecewise-linear
Lagrange elements,

basis = InteriorBasis(mesh , ElementTriP1 ())

assembles the stiffness matrix (16),
a = asm(laplace , basis)

identifies the nodes lying on ports and therefore subject to essential conditions,
ports = basis.get_dofs(mesh.boundaries)

identifies the complementary nodes corresponding to the degrees of free-
dom (17),

dofs = basis.complement_dofs(ports)

prefills the n solution vectors of length N with the Dirichlet data,
p = zeros ((basis.N, len(mesh.boundaries )))
for k, port in enumerate(ports.values ()):

p[port.all(), k] = 1.

and solves for all n right-hand sides of (18) simultaneously.
p[dofs] = solve (* condense(a, zeros_like(p), p, dofs))

The reciprocal inertance matrix is computed by the third method (19).
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inlet 46 310
actuator

150 90 nozzle

Figure 1: Two-dimensional version of the prototype bubble jet of Asai [2]
with the three ports named and key dimensions marked in arbitrary units.

s = p.T @ a @ p

4.2 Example: Asai’s prototype bubble jet

Asai [2] presented transient simulations of the actuation of a three-port
bubble jet topologically equivalent to that discussed in Section 1. Here a two-
dimensional version is used for demonstration; see Figure 1 for the dimensions
and Figure 2 for the three pressure impulse fields. The reciprocal inertance
matrix as extrapolated from the sequence of refined grids is (with ports
ordered actuator, nozzle, inlet)s00 s01 s02

s10 s11 s12
s20 s21 s22

 =

+0.361223 −0.221071 −0.140152
−0.221071 +0.221170 −0.000099
−0.140152 −0.000099 +0.140252

 . (20)

The smallness of s12 = s21 ≈ −10−4 indicates that the two-branch model [4]
is reasonable; nozzle-flows are little influenced by the inlet.

4.3 Convergence

The error of each of the three estimates for the s01 actuator–nozzle coefficient
is plotted in Figure 3 against h, the length of the longest edge in the mesh.
An analysis is outside the present scope but a few features deserve comment.
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(a)

(b)

(c)

Figure 2: Pressure impulses for the (a) actuator, (b) nozzle, and (c) inlet.
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Figure 3: Relative error of s01 with P1 or P2 elements, and based on:
(blue) influx (10); (red) kinetic energy (13); or (green) the discrete quadratic
form (19).
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The P2 piecewise-quadratic basis solutions converge no faster than the
P1 piecewise-linear basis solutions. The actuator port is flush with the
boundary whereas ideally ports are at right-angles to walls. Locally this
induces a square-root singularity [6, §3.1.3] which lies in the Sobolev space Hσ
only for σ < 3/2 [9], limiting the finite element H1 convergence of the Π(k),
and so the L2 convergence of its gradient, to o(

√
h) [6, eq. 3.21]. This con-

vergence is achieved by any piecewise degree n polynomial basis Pn with
n > σ− 1 , so P1 suffices.

The naïve estimate of inertance from its definition in terms of influx (10) is
seen to converge most slowly; its observed rate o(

√
h) is just that of the error

expected of the gradient of the potentials. Note that this is not O(
√
h) since

the inequality σ < 3/2 is strict.

The second (13) and third (19) methods are closely related and converge
like the squared H1-norm of the potentials, thus with o(h), this h being
the square of the

√
h limiting the potentials. This holds for any piecewise

degree n polynomial space Pn with n > 1 .

From experience, although the second and third methods converge with the
same order, the second is usually found to be more accurate in the pre-
exponential factor perhaps as it involves ‘gradient-averaging’ which often
leads to a more accurate approximation of the gradient [13].

5 Conclusion

Lumped models of microhydraulic vessels based on two-port branch circuits
can be improved by the use of multiport components, replacing the scalar
branch inertance with a reciprocal inertance matrix which is symmetric, has
positive diagonal, negative off-diagonals, and zero row- and column-sums.

Classical P1 finite elements provide a simple method of computing the po-
tential flow in multiport microhydraulic vessels. They are robust against
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the singularities not uncommon in received geometries. Of the three ways
to postprocess the reciprocal inertance coefficients, the two based on energy
generally converge faster than the basic boundary fluxes.

Acknowledgement We thank Frédéric Hecht for hints on (13) for n = 2
and an anonymous reviewer for insights on the errors (§ 4.3).
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