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The application of sparse grid quadrature in
solving stochastic optimisation problems
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Abstract

Stochastic optimisation problems minimise expectations of random
cost functions. Thus they require accurate quadrature methods in order
to evaluate the objective. Promising methods based on sparse grids
were shown to display high quadrature accuracy for smooth integrands.
But they have negative quadrature weights which potentially destroy
the convexity of the objective and thus may lead to totally wrong
results. We prove here that, due to their high accuracy, sparse grids
maintain the convexity of the objective for sufficiently fine grids. An
application to optimal control demonstrates the superiority of sparse
grids over Monte Carlo and product rule based approaches.
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1 Introduction

A stochastic optimisation problem is an optimisation problem of the form

min
u∈U

E [h(u,W)] , (1)

whereW is a high-dimensional real random vector, the cost function h(·, ·)
is smooth and convex, and the domain U ⊂ Rd , with positive integer d,
is convex and compact. Problems of this form occur in many applications
related to complex decision making in finance, engineering and statistics [10].

If the random vectorW admits a probability density p(w) on Rd, then the
objective is of the form

F(u) := E [h(u,W)] =

∫
Rd

h(u,w)p(w)dw =

∫
Rd

f(u,w)dw , (2)

where f(u,w) = h(u,w)p(w) .

One approach to solving stochastic optimisation problems minimises a nu-
merical approximation of the integral (2) by a suitable quadrature method
and minimises this surrogate of the objective. In the stochastic programming
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literature this is called the scenario generation method [10]. Because of the
high-dimensionality of the integral, the Monte Carlo method is frequently
used in stochastic optimisation. However, in many applications involving
high-dimensional integrals it was shown that deterministic methods like the
Quasi Monte Carlo method and sparse grid quadrature produce more accurate
results [3, 7].

In Section 2 we discuss sparse grid quadrature for high-dimensional integrals.
We consider methods based on the trapezoidal rule, the Clenshaw–Curtis
method and the Gauss–Patterson rule. These methods are used widely and
give good approximations for smooth integrands [2, 6, 7] which result in
good approximations of the objective function of stochastic optimisation.
A transformation of the integration domain to [−1, 1]d is required but this
is unproblematic for most applications (it uses the cumulative distribution
function). Sparse grids are typically better than Monte Carlo methods and
preferred over Quasi Monte Carlo methods. However, sparse grids have the
drawback that a convex objective may be approximated by a non-convex
function. We consider this problem in Section 3 and prove that convexity is
maintained for quadrature rules of sufficient accuracy. We also provide an
example which suggests that convexity is maintained even for moderately
sized sparse grids. In Section 4 we illustrate how our approach to stochastic
optimisation is used for optimal control problems. We also provide a simple
example which demonstrates the computational efficiency compared to Monte
Carlo and product rules.

2 Sparse grid quadrature rules

Here we review numerical methods which approximate integrals of the form

I(f) =

∫
[−1,1]d

f(w)dw , (3)
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for given functions f when the dimension d is larger than three. These
quadrature rules are based on methods for the case d = 1 . A challenge facing
the product rule, which is commonly used for lower dimensions d, is the curse
of dimensionality, but this issue is addressed by sparse grids. A thorough
discussion of quadrature rules, including those based on sparse grids, can be
found in the literature [2, 6, 7].

Sparse grid quadrature is built upon a sequence of one-dimensional rules. The
rules considered here are based either on the trapezoidal rule, the Clenshaw–
Curtis rule [4] or the the Gauss–Patterson rule [9]. The jth rule in this
sequence is denoted as

Qj(f) =

Nj∑
i=1

cj,if(wj,i) , j = 1, 2, . . . , (4)

where cj,i and wj,i are the ith weight and ith quadrature point of the jth rule,
respectively. The equidistant trapezoidal rule with Nj = 2

j−1 + 1 quadrature
points has O(4−j) accuracy for C2 (twice continuously differentiable) func-
tions f (the method is substantially more accurate for periodic functions). The
Clenshaw–Curtis rule with Nj = 2

j−1 + 1 quadrature points integrates poly-
nomials of degree Nj exactly and has O(2−jr) accuracy for Cr functions f [5,
6, 7] where r 6 Nj . The quadrature points of Clenshaw–Curtis are extremal
points of a Chebyshev polynomial. The Gauss–Patterson rule is an extension
of the Gauss–Kronrod scheme [9]. It has Nj = 2

j − 1 quadrature points and
is exact for polynomials of degree (3Nj − 1)/2 [5, 6]. Its accuracy is O(2−jr)
for Cr functions where r is at most equal to the polynomial accuracy.

Multidimensional quadrature rules are constructed using the differences

∆j(f) = Qj(f) −Qj−1(f) , j = 1, 2, . . . , (5)

where Q0(f) = 0 . One then has, for level l,

Ql(f) =

l∑
j=1

∆j(f) . (6)
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The sets Gj = {wj,1, . . . ,wj,Nj
} of quadrature points are nested for the three

families of methods considered, that is, Gj ⊂ Gj+1 . Quadrature rules with this
property are called hierarchical. For hierarchical quadrature rules the ∆j(f)
are linear combinations of function values f(w) for w ∈ Gj . The absolute
value of ∆l+1 is of the same order as the error of Ql.

One approach to quadrature on the unit cube uses product rulesQl1⊗· · ·⊗Qld .
For example, for d = 2 one has

Ql1 ⊗Ql2 (f) =

Nl1∑
i1=1

Nl2∑
i2=1

cl1,i1cl2,i2f(wl1,i1 ,wl2,i2) , (7)

and similarly for d > 2 . The number of quadrature points required is then
the product of the points used for the one-dimensional rules. Thus the
computational complexity of the product rule is O(Nd

l ) for li = l . However,
the accuracy of the product rules is of the same order O(2−lr) independent of
the dimension. This is related to the curse of dimensionality.

The product rules are recast in terms of the differences ∆j as

Ql1 ⊗ · · · ⊗Qld (f) =
∑
j6l

∆j1 ⊗ · · · ⊗ ∆jd(f) , (8)

where vector j 6 l means each of its element jk 6 lk for k = 1, . . . ,d . Instead
of using all the difference terms with index j 6 l , the sparse grid quadrature
only sums up a subset of terms. The level l classical sparse grid quadrature
based on the hierarchical 1D rules is defined by

Qd
l (f) =

∑
|j|16l+d−1

∆j1 ⊗ · · · ⊗ ∆jd(f) , (9)

where |j|1 = j1 + · · ·+ jd . Although some difference terms have been omitted
in the sparse grid quadrature formula (9) compared to the product rule (8),
sparse grid methods can still achieve a satisfactory approximation since these
dropped terms are usually very small when the integrand is smooth. If we
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(a) trapezoidal rule (b) Clenshaw–Curtis

(c) Gauss–Patterson

Figure 1: 2D sparse grids with respect to (a) the trapezoidal rule, (b) the
Clenshaw–Curtis and (c) the Gauss–Patterson rules for level l = 5 . More
quadrature points are close to the boundary in the Clenshaw–Curtis and
Gauss–Patterson rules.
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Figure 2: We compute the integral
∫
[0,1]d
∏d

i=1 exp(xi)dx with d = 6 using
sparse grids generated by the three different univariate quadrature rules. The
Gauss–Patterson (gp) and Clenshaw–Curtis (cc) rules perform much better
than the trapezoidal rule (tra).

assume the integrand f has bounded mixed derivatives up to order r, that is,
f ∈ Hr([−1, 1]d) where

Hr([−1, 1]d) =
{
f : [−1, 1]d → R : max

|α|∞6r

∥∥∥∥∂|α|1f∂αw

∥∥∥∥ <∞} , (10)

where ‖ · ‖ denotes the L2 norm, |α|1 = α1 + · · · + αd and |α|∞ = maxj αj ,
then the error of the sparse grid quadrature is O

(
N−r(logN)(d−1)(r−1)

)
[2,

6, 7] where N is the number of the sparse grid quadrature points. We show
three different types of sparse grid in Figure 1 and test their performances in
Figure 2.
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3 Convexity of the sparse grid surrogate

Since the function h(u,w) is convex, so is the objective F(u) = E[h(u,W)] .
Here we approximate this objective using sparse grid quadrature. Unlike
Monte Carlo (mc) or Quasi Monte Carlo (qmc) methods, the quadrature
weights of sparse grids can be negative. As a consequence, the surrogate Fl(u)
may no longer be convex. The surrogate is defined as

Fl(u) =

N∑
i=1

cif(u,wi) , (11)

where ci and wi are the level l sparse grid weights and quadrature points,
respectively. We choose sparse grids as they have superior approximation
properties for smooth integrands compared to mc and qmc. We are currently
working on how to address the above convexity change problem. Theorem 1
proves that for sufficiently large l, Fl(u) is convex under certain conditions
on h and the probability density p(w) of the random vectorW.

In the following theorem we do not assume that h(·,w) or f(·,w) are convex
for all w. We use the following norm in C2[U]:

‖F‖ = sup
u∈U

[
|F(u)|2 +DF(u)TDF(u) + trace

(
D2F(u)TD2F(u)

)]1/2 , (12)

for F ∈ C2[U] , where DF is the gradient and D2F the Hessian of F, respectively.

Theorem 1. Let U ⊂ Rn be convex and compact and Ω = [−1, 1]n , and let

(i) Fl ∈ C2(U) and F ∈ C2(U) ,

(ii) Fl → F in the C2(U) norm for l→∞ and

(iii) D2F(u) > γI for all u ∈ U for some γ > 0 independent of u.

Then there exists l0 > 0 such that Fl(u) is strictly convex for u ∈ U and all
l > l0 .
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Figure 3: The dependence of the convexity of the sparse grid surrogate on
the level when α = β = 50 .

Proof: From the assumptions (i) and (iii), one gets

D2Fl(u) > (γ− ‖F− Fl‖) I .

The result then follows directly from (ii). A detailed proof of the theorem is
available in the supplementary Appendix 1. ♠

In Figures 3 and 4 we compute a simple stochastic optimisation problem with
cost function

h(u,W) = u2 + (W2
0 + 10W

2
1)u , (13)

1http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/
downloadSuppFile/14060/37294

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/14060/37294
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/14060/37294
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/14060/37294
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Figure 4: The dependence of the convexity of the sparse grid surrogate on
the level when α = β = 100 .

where u ∈ U = [−5, 5] and Wi with i = 1, 2 are i.i.d. random variables
satisfying

Wi ∼ Beta(α,β) . (14)

Rewriting the cost function (13) explicitly in integral form, the problem
becomes

min
u∈U

∫ 1
0

∫ 1
0

[u2 + (w20 + 10w
2
1)u]p(w0)p(w1)dw0dw1 , (15)

where p is the probability density function of Wi. The objective function
is strictly convex over U and ∂2F/∂u2 = 2 at any point of U. The exact
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solution u∗ is
u∗ = −

1

2

(
E[W2

0 ] + 10E[W2
1 ]
)
. (16)

Figure 3 shows the sparse grid surrogates of the example with levels l =
4, 5, 6, 7 for α = β = 50 where the exact solution of (15) is u∗ ≈ −1.38861 .
Similarly, Figure 4 shows the sparse grid surrogates of the example with
levels l = 4, 5, 6, 7 for α = β = 100 where the exact solution of (15) is
u∗ ≈ −1.38184 . The univariate quadrature rule used in this example is the
Gauss–Patterson rule. We see from Figure 3 that the surrogate function is
concave when l = 4, 5 and becomes convex when the level increases to l = 6, 7 .
The minimizer of the surrogate function with l = 4, 5 is Fl(u) = 5 on the
boundary of U, which is far from the the exact solution u∗ which is an interior
point. However, the computed minimizers are −1.50965 and −1.39318 for
l = 6, 7 , respectively, which are much better approximations for u∗. Figure 4
presents a more extreme example, although it shows the same pattern of the
change of convexity as that in Figure 3. The computational results in Figures
3 and 4 agree with Theorem 1 since the sparse grid surrogate becomes strictly
convex when the level l is large enough under given assumptions.

4 Application to stochastic control

In this section we illustrate our sparse grid approach with an instance of a
discrete time open-loop stochastic control problem. Bertsekas [1] discusses
the general class of such control problems. General stochastic discrete time
control problems are described by a dynamic system with states xi for times
i = 0, 1, 2, . . .. Typically, the states are elements of some linear space. Here
we consider only finite dimensional spaces and in our example we consider
the case of one dimensional spaces. The dynamics are influenced by control
variables ui and noise wi. In particular, the initial state x0 is given and the
later states are obtained recursively by

xi+1 = ψi(xi,ui,wi) , i = 0, . . . ,d− 1 , (17)
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for some rules ψi. It follows that the vectors of states, control and noise,
respectively,

x = (x0, . . . , xd−1) , u = (u0, . . . ,ud−1) , w = (w0, . . . ,wd−1) , (18)

satisfy some system of equations

x = Ψ(x,u,w) . (19)

The state vector (computed by evaluating the functions ψi in turn) is then of
the form

x = ξ(u,w) . (20)

Control theory is concerned with the determination of the control variable u.
The control is optimal if it minimises some cost function Φ(u, x) . Inserting
the state equations x = ξ(u,w) the cost is then

h(u,w) = Φ
(
u, ξ(u,w)

)
.

One difficulty is that the actual noise vector w is unknown. In this case,
one minimises the expected costs. For this, one requires a stochastic model
for the dynamical system. In particular, the noise vector w is modelled as
a random vectorW with i.i.d. components Wi with some given probability
density. As we cannot assume knowledge of the sample values of Wi, we
consider open-loop-control [8] and in particular the controls ui are not random.
However, the states are random vectors

X = Ψ(X,u,W) , (21)

and thus
X = ξ(u,W) . (22)

Instead of minimising the actual cost h(u,w) we then minimise the expected
cost and thus have the minimisation problem

min
u∈U

E [h(u,W)] . (23)
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Written in terms of the cost function Φ and the equation for the states of the
dynamical system (22), the expected cost and its surrogate with N quadrature
points is ∫

Rd

Φ
(
u, ξ(u,w)

)
p(w)dw ≈

N∑
j=1

ciΦ
(
u, ξ(u,wj)

)
p(wj) . (24)

To illustrate our sparse grid approach and get some insights into its compu-
tational performance we consider a linear dynamical system with quadratic
costs. In particular, we have

x = Ax+ Bu+ Cw+ x0e0 (25)

and
Φ(u, x) = uTPu+ xTQx , (26)

where A, B, C, P and Q are given d× d matrices and x0 is the given initial
value. We then get ξ(u,w) = (I−A)−1(Bu+ Cw+ x0e0) and from this we
obtain h(u,w) which is also a quadratic function.

We use the certainty equivalence principle [1] to get an explicit expression
for the optimal u. According to the principle, the solution of the stochastic
control problem is the same as that of a corresponding deterministic problem
when the objective function is quadratic and the constraints are linear. This
means we get the reference solution by numerically solving the deterministic
problem, as described in the supplementary Appendix 2.

To test our numerical solver we use the Broyden–Fletcher–Goldfarb–Shanno
algorithm to solve the surrogate problem. In the test we set d = 7 , P and Q
diagonal matrices with pi = qi = 1/d , i = 0, . . . ,d − 1 on their diagonals,
A, B and C subdiagonal matrices with ai = (1 + 1/d) , bi = 1 , ci = 1 ,
i = 0, . . . ,d − 1 on their subdiagonal, respectively, and Wi ∼ Beta(2, 3) ,

2http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/
downloadSuppFile/14060/37295

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/14060/37295
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/14060/37295
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/downloadSuppFile/14060/37295
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Figure 5: Computational results for the open-loop stochastic control prob-
lem with low level sparse grids for the trapezoidal (sp_tra), Clenshaw–
Curtis (sp_cc), and Gauss–Patterson (sp_gp) methods.

i = 0, . . . ,d− 1 . Since the integrand is zero on the boundary of the domain
of the integral, the quadrature points on the boundary are not counted for
the sparse grid based on the trapezoidal and Clenshaw–Curtis rules. Figure 5
shows the convergence performance of the sparse grid generation method with
three different univariate quadratures. As discussed in Section 3, we may
obtain wrong solutions when we use low level sparse grids. However, when
we increase the level a certain amount, the numerical solution of the sparse
grid generation method starts to converge to the reference solution. Figure 6
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Figure 6: Computational results for the open-loop stochastic control prob-
lem for the trapezoidal (sg_tra), Clenshaw–Curtis (sg_cc), and Gauss–
Patterson (sg_gp) methods without low level approximations, as well as
the product trapezoidal rule (tra) and the Monte Carlo method averaged over
ten runs (mc_10).

presents the errors of three different quadrature rules applied to this problem.
They are the product trapezoidal rule, the Monte Carlo method averaged over
ten runs and the three sparse grid methods without low level approximations.
All three sparse grid methods converge faster than the product trapezoidal
rule and Monte Carlo method for this example. In particular, the convergence
rates of Clenshaw–Curtis and Gauss–Patterson are much better than other
methods.
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5 Conclusions

The numerical results show that the sparse grid generation method can be
used to solve stochastic optimisation problems. Its performance is usually
better than the product rule or Monte Carlo method when the integrand
in the objective function is sufficiently smooth. However, we need to be
very careful when choosing the level of the sparse grid since low level sparse
grids cannot keep the convexity of the original problem and therefore lead to
an inaccurate solution. In this article we only study convex problems. For
non-convex problems Chen et al. [3] proved the epi-convergence of the sparse
grid surrogate. However, how to choose a suitable level for the sparse grid
prior to computation is still an open problem.
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