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Error indicators and adaptive refinement of
the discrete thin plate spline smoother
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Abstract

The discrete thin plate spline is a data fitting and smoothing tech-
nique for large datasets. Current research only uses uniform grids
for this discrete smoother, which may require a fine grid to achieve a
certain accuracy. This leads to a large system of equations and high
computational costs. Adaptive refinement adapts the precision of the
solution to reduce computational costs by refining only in sensitive
regions. The error indicator is an essential part of the adaptive refine-
ment as it identifies whether certain regions should be refined. Error
indicators are well researched in the finite element method, but they
might not work for the discrete smoother as data may be perturbed by
noise and not uniformly distributed. Two error indicators are presented:
one computes errors by solving an auxiliary problem and the other
uses the bounds of the finite element error. Their performances are
evaluated and compared with 2D model problems.

doi:10.21914/anziamj.v60i0.14061 gives this article, c© Austral. Mathematical Soc.
2019. Published June 23, 2019, as part of the Proceedings of the 18th Biennial Compu-
tational Techniques and Applications Conference . issn 1445-8810. (Print two pages per
sheet of paper.) Copies of this article must not be made otherwise available on the internet;
instead link directly to the doi for this article.

http://dx.doi.org/10.21914/anziamj.v60i0.14061


Contents C34

Contents
1 Introduction C34

2 Background C35

3 Error indicators C37
3.1 Auxiliary problem error indicator . . . . . . . . . . . . . . C38
3.2 Norm-based Error indicator . . . . . . . . . . . . . . . . . C39

4 Model problems C40

5 Conclusion C49

1 Introduction

Data fitting and smoothing is an important part of many applications, in-
cluding image processing and correspondence recovery [2, 6]. To identify the
correct trends we need to interpolate the observed data and also smooth noise
in the scattered data.

The discrete thin plate spline was developed by Roberts, Hegland and Altas to
approximate the thin plate spline by combining the finite element method [4].
Instead of using global basis functions, it utilises piecewise polynomial basis
functions with local support. The resulting system of equations is sparse and
the size depends only on the number of nodes in the finite element grid, which
is more efficient for large datasets.

Current examples of the discrete thin plate spline are produced using uniform
grids. The efficiency of the technique can be further improved by using
adaptively refined grids to adapt the precision of the solution iteratively
within certain sensitive regions. The error indicator is critical in the adaptive
refinement process as it evaluates and determines whether to refine a given
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element. Many error indicators have been developed for the finite element
method. However, traditional error indicators might not work for the discrete
smoother as the observed data is usually perturbed by noise and not uniformly
distributed.

In this article we present two error indicators for the discrete thin plate spline
and evaluate their performance through a numerical experiment. Section 2
provides more background information on the thin plate spline and the discrete
thin plate spline. Section 3 presents more details of two error indicators for
the discrete smoother. Section 4 evaluates the performance of the two error
indicators with a pair of model problems.

2 Background

Let {(x(i),y(i)) : i = 1, 2, . . . ,n} be a set of observed data where x(i) ∈ Rd
is a predictor value and y(i) ∈ R is a response value. The thin plate spline
provides a smooth interpolation f(x) that predicts response values y = f(x)
based on given predictor values x. Given n data points, the functional f(x)
minimises

Jα(f) =
1

n

n∑
i=1

[f(x(i)) − y(i)]
2 + α

∫
Ω

∑
|v|=2

[Dvf(x)]2 dx , (1)

where α is the smoothing parameter, v = (v1, . . . , vd) , |v| =
∑d

j=1 vj , andD
v is

a second order vector derivative. The first term of minimisation problem (1)
measures fidelity to the data and the second term measures smoothness of the
fit. The smoothing parameter α balances the fidelity and the smoothness of
the interpolation, which can be calculated automatically using, for example,
generalised cross-validation [8]. The resulting system of equations for the
minimisation problem (1) is dense and its size depends on the size of the
datasets.
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The discrete thin plate spline was developed to approximate the thin plate
spline and interpolate large datasets efficiently. Instead of using radial basis
functions with global support, it uses piecewise polynomial basis functions
with local support. This leads to a sparse system of equations whose size
depends only on the number of nodes in the finite element grid. The grid can
be built independently of the dataset, which is more efficient for fitting large
datasets [7].

The discrete smoother s(x) is represented as a linear combination of piecewise
linear basis functions b(x) on H1(Ω) finite elements as s(x) = b(x)Tc ,
where b(x) = [b1(x), . . . ,bm(x)]T , c = [c1, . . . , cm]T are the corresponding
coefficients, m is the number of nodes and Ω is the domain. We choose
H1(Ω) finite elements because they produce sparse matrices with better
conditioning [4]. Since the smoothing term in equation (1) is of order H2(Ω)
and is not defined for the piecewise linear basis functions b(x), auxiliary
functions u are introduced to represent the gradient of the discrete smoother s,
such that

∇s = u =

u1
...
ud

 =

 b1(x)g1
...

bd(x)gd

 , (2)

where g1, . . . ,gd are coefficients of the approximation of the gradient. The
discrete smoother s and u satisfy the relationship∫

Ω

∇s(x)∇bj(x)dx =

∫
Ω

u(x)∇bj(x)dx (3)

for every basis function bj(x) . This ensures ∇s and u are equivalent in a weak
sense. Now the order of smoothness is lowered from H2(Ω) to H1(Ω), and
H1(Ω) is defined for piecewise linear basis functions of the discrete smoother.
The constraint (3) is rewritten as

Lc =

d∑
k=1

Gkgk , (4)
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where L is a discrete approximation to the negative Laplacian with Li,j =∫
Ω
∇bi · ∇bj dx and Gk is a discrete approximation to the gradient operator

with (Gk)i,j =
∫
Ω
bi · ∂kbj dx .

The minimiser of the discrete smoother is reformulated as

Jα(c,g1, . . . ,gd) = cTAc− 2dTc+ yTy/n+ α

d∑
k=1

gTkLgk , (5)

subject to constraint (4), and where A =
∑n

i=1 b(x(i))b(x(i))
T/n , y =

[y(1), . . . ,y(n)]T and d =
∑n

i=1 b(x(i))y(i)/n . A single scan of the dataset is
required to construct A and d. The minimisation problem (5) is solved using
Lagrange multipliers [7].

As the mesh size of the grid decreases, the discrete thin plate spline con-
verges to the model function [4]. In order to obtain an accurate discrete
approximation, the grid needs to be resolved with finer elements. Uniform
refinement refines all the elements in the domain iteratively, which leads
to high computational costs. Adaptive refinement was developed to adapt
the precision of a solution dynamically within certain sensitive regions [3].
By only refining part of the domain, the finite element grid can achieve the
required accuracy with a smaller system of equations, which leads to fewer
computational costs and memory requirements.

3 Error indicators

Error indicators analyse local information and give values to indicate elements
with large errors [1, 3]. Many error indicators have been developed to
approximate partial differential equations. However, they may not work for
the discrete thin plate spline. The discrete smoother uses the scattered data,
which is often perturbed by noise and not uniformly distributed. Moreover,
the convergence of the discrete smoother depends on α + d4 + h4 , where
d is the minimum distance between data points and h is the mesh size [4].
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The accuracy of the discrete smoother might not be improved after refining
because of factors other than the mesh size h.

Here, two error indicators of the finite element method are modified for the
discrete smoother. They are tested using 2D finite element triangular grids
and triangles are refined using the newest node bisection [3]. Error indicators
discussed in this article focus on determining whether to refine a triangle pair,
but the techniques can also be applied to other types of grids.

3.1 Auxiliary problem error indicator

The first error indicator approximates the error by solving an auxiliary
problem [3]. The auxiliary problem takes the form of solving a discrete
smoother with Dirichlet boundaries to obtain a more accurate solution in the
local domain. The local domain can be a triangle pair, as shown in Figure 1(a).
The local discrete smoother requires a small system of equations and low
computational costs. It can also include more neighbouring triangles, as shown
in Figure 1(b), which will increase the accuracy, but also the computational
costs. The numerical experiments in this article use the five-point local
domain in Figure 1(b). We chose local domain in order to reduce the effects
of noise, despite additional computational costs.

The accuracy of the auxiliary problem is improved by refining the triangle
pair, which is marked with dashed lines in Figure 1. The improved solution ŝ
should be a better approximation than the current solution s. The error is
approximated by ‖ŝ − s‖, where ‖ · ‖ is the energy norm over the original
triangle pair. This error indicator is approximating the reduction in error
due to refining the triangle pair. Therefore, dividing the triangle pairs with
the highest error indicators is equivalent to dividing the triangle pairs that
change the solution the most. One limitation of this error indicator is the
additional computational costs and memory requirements. Solving auxiliary
problems requires the A and d in minimisation problem (5) using data points
stored in memory.
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(a) one-point domain (b) five-point domain

Figure 1: Two local domains [3].

3.2 Norm-based Error indicator

The second error indicator uses a bound on the L∞ norm of the error of
the finite element solution to calculate indicator values [3, 5]. The accuracy
of a piecewise polynomial approximation to the partial differential equation
solution using the Galerkin method depends on how accurately the solution
can be approximated in the approximating space. Sewell [5] suggested that
the error of a 2D finite element solution with piecewise linear basis functions
is bounded by

∫
ti
D2

maxudx , where ti is ith triangle, u is the model function
of a smooth problem and D2

maxu(x1, x2) = maxi+j=2 |∂2u(x1, x2)/∂xi1x
j
2| .

In a uniform grid, when the triangles are small enough, D2
maxu is nearly

constant in every triangle. Therefore, for a near-optimal grid,
∫
ti
D2

maxudx
should be approximately equal for all the triangles. This error indicator sets
the integral value of a triangle pair as its indicator value. It refines triangles
with higher integral values to ensure the integral value is approximately equal
for all triangles. It identifies regions where the solution changes rapidly and
uses finer elements to achieve the required accuracy in those regions.
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DerivativeD2
maxu cannot be estimated accurately since u is unknown. Sewell [5]

approximted the integral using the current finite element solution s. Since
D2

maxs ≡ 0 for piecewise linear basis functions, D2
maxu cannot be computed di-

rectly using s. Instead, we approximate first order derivatives Dx1s and Dx2s

on each triangle, which are gradients of the piecewise flat surface s. The
derivative Dxjs of the triangle ti is denoted as Dxj,tis . The Dx1s and Dx2s

values on each node are estimated as the average of Dx1s and Dx2s values on
neigbouring triangles Dxjs =

∑k
i=1Dxj,tis/k , where k is the number of neigh-

bouring triangles. We define new piecewise flat surfaces by using Dx1s or Dx2s

on each node as the nodal value. Derivatives Dx1x1,tis , Dx1x2,tis , Dx2x1,tis

and Dx2x2,tis on each triangle ti are calculated using the new piecewise flat
surfaces in the same way as Dx1,tis and Dx2,tis . The derivative of triangle ti
is approximated as

D2
maxu(x1, x2) ≈ max{Dx1x1,tis, (Dx1x2,tis+Dx2x1,tis)/2,Dx2x2,tis} . (6)

4 Model problems

As mentioned in Section 3, the convergence of the discrete smoother depends
on the smoothing parameter α, the minimum distance to any data d and
mesh size h. The discrete smoother’s accuracy cannot be improved by a
smaller h if α and d are too large, as shown in Figures 2, 3 and 4 which
present three 1D examples. The data points are shown as triangles and the
discrete smoother is represented by the blue line. Figure 2 shows a discrete
smoother with α = 10−7 and d = 0.01 , which gives a good fit to the model
problem. The discrete smoother is paired with a large smoothing parameter
α = 0.0001 in Figure 3 and in Figure 4 a large d is applied due to missing
data. Neither interpolations in Figures 3 and 4 represent the data points as
well as the discrete smoother shown in Figure 2.

Figure 5 shows the log-log plots of the three 1D examples in Figures 2, 3 and 4.
The L2 error norm of the discrete smoothers in Figures 3 and 4 are not reduced
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Figure 2: The 1D discrete smoother with standard α = 10−7 and d = 0.01 .
Data points {(x(i),y(i))} are green triangles and the discrete smoother y = f(x)
is the blue line.

by increasing the number of nodes. The L2 error norm of the discrete smoother
in Figure 2 decreases as the number of nodes are increased in the first three
iterations. Then the error halts as h becomes smaller than d, which no longer
improves the accuracy of the discrete smoother.

A pair of 2D model problems, shown in Table 1, were derived to test the
performance of error indicators. The exponential function has steep gradients,
which require finer elements to achieve higher precision. In contrast, the sine
function is smoother and is a good test problem to check over-refinement. We
tested these model problems with and without noise to verify the error indi-
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Figure 3: The 1D discrete smoother with d = 0.01 and large α = 0.0001 .
Data points {(x(i),y(i))} are green triangles and the discrete smoother y = f(x)
is the blue line.

Table 1: Model problems.

Model u(x) n α

sine sin(πx1) sin(πx2) 250 000 10−7

exponential exp[−30(x1 − 0.5)2] exp[−30(x2 − 0.5)2] 250 000 10−7
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Figure 4: The 1D discrete smoother with α = 10−7 and large d = 0.3 . Data
points {(x(i),y(i))} are green triangles and the discrete smoother y = f(x) is
the blue line.

cators’ performance. The uniform random noise is in the range [−0.05, 0.05] .
In these test problems, we selected α = 10−7 , which is an intermediate
smoothing parameter for smooth problems. We also chose d = 0.0015 , which
is shorter than the shortest edge in the grid. We choose small values for
α and d since we focus on how the error indicators depend on h.

The experiment compares the efficiency of the refined grids, measured by the
square root of the number of nodes required to achieve a certain precision.
Mesh size h is normally used to indicate the fineness of the grid, but it is not
applicable for adaptively refined grids. So the square root of the number of
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Figure 5: The L2 error norm dependence on the number of nodes for: (a) α =
10−7 , d = 0.01 ; (b) α = 0.0001 , d = 0.01 ; (c) α = 10−7 , d = 0.3 . Numbers
in the legend are the convergence rates.

nodes is used as it approximates 1/h in 2D grids. In each adaptive refinement
iteration, error indicators are calculated for each triangle pair and the ones
with the highest indicator values were refined until the number of nodes
doubled. The error norm is estimated by ‖e‖ =

√∑
ti
h2ie

2
i , where hi is the

longest edge in triangle ti and ei is the interpolation error at the centre point
of triangle ti. We used the model problem function u as the true solution for
datasets without noise as the discrete smoother converges to this true solution.
Since the true solution of model problems with noise is unknown, we used
a discrete smoother with uniform grids and minimum mesh size h = 0.005
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Figure 6: Convergence of the sine model problem u(x) = sin(πx1) sin(πx2)
with no noise and using: (i) the auxiliary problem error indicator; (ii) the norm-
based error indicator; and (iii) uniform refinement. Numbers in the legend
are the convergence rates.

as the fine grid solution to estimate the error norm. We also include the
performance of the uniform refinement for comparison.

Figures 6 and 7 are for no noise and uniform noise, respectively, and show
log-log plots of the adaptive refinement and the uniform refinement for the
sine model. Similarly, Figures 8 and 9 are for no noise and uniform noise,
respectively, and show log-log refinement plots for the exponential model.

For the sine model with no noise, Figure 6 shows the adaptive refinement
with both error indicators has very close convergence rates, which are slightly
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Figure 7: Convergence of the sine model problem u(x) = sin(πx1) sin(πx2)
with uniform noise [−0.05, 0.05] and using: (i) the auxiliary problem error
indicator; (ii) the norm-based error indicator; and (iii) uniform refinement.
Numbers in the legend are the convergence rates.

higher than the uniform refinement. The adaptively refined grids achieve a
similar result as the uniform refinement because the sine model problem is
smooth. For the exponential model with no noise, Figure 8 shows the adaptive
refinement converges much faster than the uniform refinement and both error
indicators have similar efficiency and significantly improve the efficiency of
the grids. Regions in exponential model with steep gradients are better dealt
with by the adaptive refinement, as revealed by relatively lower error norms.

The initial performances of error indicators for both model problems with
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Figure 8: Convergence of the exponential model problem u(x) = exp[−30(x1−
0.5)2] exp[−30(x2 − 0.5)2] with no noise and using: (i) the auxiliary prob-
lem error indicator; (ii) the norm-based error indicator; and (iii) uniform
refinement. Numbers in the legend are the convergence rates.

noise are similar to the ones without noise. Both error indicators perform
slightly better than the uniform refinement for the sine model problem and
improve the efficiency significantly for the exponential model problem, as
shown in Figure 7 and 9. However, both performances deteriorate at the
last iteration. The error indicators may be misdirected by noise and refine
triangles that contribute little to error reduction. Noise in data leads to a
discrete smoother with a more oscillatory surface than the original function.
The auxiliary problem error indicator utilises data points in the local domain
to estimate the error. Noise has more effect on the local approximation for a
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Figure 9: Convergence of the exponential model problem u(x) = exp[−30(x1−
0.5)2] exp[−30(x2 − 0.5)2] with uniform noise [−0.05, 0.05] and using: (i) the
auxiliary problem error indicator; (ii) the norm-based error indicator; and
(iii) uniform refinement. Numbers in the legend are the convergence rates.

smaller local domain with fewer data points. Hence the auxiliary problem
error indicator tends to refine oscillatory regions caused by noise instead of
the peaks of the model problems. The norm-based error indicator does not
use data points and its process of approximating D2

maxu tends to smooth
the oscillatory surface caused by noise. The norm-based error indicator only
refined the sensitive regions of the original model problems, without reducing
the error at the oscillatory regions.

The results of this experiment show that the adaptive refinement improves
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the efficiency of the discrete smoother, especially for model problems with
sensitive regions, such as the exponential function. Both error indicators
perform similarly when no noise is present. However, neither error indicator
handles noise well, which weakens the efficiency of the resulting grids. The
traditional error indicators are not designed to deal with scattered data
or noise and they perform less effectively for the discrete smoother. Their
performance can be improved by reducing the effects of the noise. For example,
D2

maxu approximations of the norm-based error indicator should detect the
oscillatory surface that is caused by noise and refine at those regions to reduce
the error.

5 Conclusion

In this article, two error indicators of a discrete smoother are presented and
evaluated by a numerical experiment on the basis of the solution accuracy
per square root of the number of nodes. The error indicators significantly
improve the efficiency of the grids for the model problems that have peaks and
steep tilts while performing similarly for the smoother model problems. The
performance of the error indicators is weakened in the presence of random
noise. Traditional error indicators are not as effective for the discrete smoother
as for partial differential equations. More work is needed on error indicators
and stopping criterion for adaptive refinement of the discrete smoother. They
should not only address the noise issue, but also the effects of α and d.
I will continue to examine techniques like generalised cross-validation and
traditional statistical tests to minimise the effects of noise and test their
performance as error indicators.
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