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Analysis of two-dimensional combustion waves
arising in the presence of a competitive

endothermic reaction
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Abstract

We consider a system of reaction-diffusion equations describing com-
bustion dynamics. The reaction is assumed to undergo two competitive
reactions, one which is exothermic and one which is endothermic. The
one-dimensional model has been shown to exhibit complex behaviour,
from propagating combustion waves with a constant speed to period
doubling cascades and the possibility of chaotic wave speeds. In this
study, we extend the combustion model from one to two dimensions
by exploring a model of an insulated strip with no heat loss and ax-
ially symmetric spread. In particular, we compare and contrast the
behaviour of the systems in one and two dimensions.
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1 Introduction

The modelling of the ignition process of a combustible fuel can involve
complex mechanisms and a large number of reactions. One of the simplifying
assumptions is to group all of the reactions into a small number of reactions.
In this work, we consider systems where there are two reactions competing
for the consumption of the fuel source, one exothermic and one endothermic.

When modelling combustion processes, the success or failure depends on many
factors. In this study, we model the combustion process in a two-dimensional
strip with insulated boundaries. If the strip is too narrow, then the combustion
process will not properly develop and the temperature will diffuse away [1].
Similarly, if the initial temperature profile does not provide enough energy,
then the combustion process will also fail [6]. We explore the effect the Lewis
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number, a ratio of the thermal and mass diffusivities, has on the combustion
process.

2 Mathematical model

We consider a system of reaction-diffusion equations describing combustion
dynamics similar to the model proposed by Hmaidi, McIntosh, and Brind-
ley [3] and analysed by Sharples et al. [5]. We assume that the reactant
undergoes two competitive reactions, one exothermic and one endothermic.
Arhhenius kinetics are assumed for both reactions, with the endothermic reac-
tion characterised by the activation energy E1, the pre-exponential factor A1
and heat release −Q1 < 0 . The exothermic reaction drives the combustion
and is characterised by the activation energy E2, the pre-exponential factor A2
and heat release Q2 > 0 .

The governing equations for the two-dimensional system described above are
the heat and mass balance equations accounting for reaction and diffusion of
heat and reactant:

ρcp
∂T

∂t
= k∇2T + ρ

(
−Q1A1e

−E1/R0T +Q2A2e
−E2/R0T

)
C , (1)

ρ
∂C

∂t
= ρD∇2C− ρ

(
A1e

−E1/R0T +A2e
−E2/R0T

)
C , (2)

where T and C are the temperature and reactant mass fraction, respectively,
t is the time coordinate, ρ is the density, k is the thermal conductivity, cp is
the heat capacity at constant pressure of the reactant, D is the coefficient
of mass diffusion, R0 is the universal gas constant, and ∇2 is the Laplacian.
Mercer and Weber [4] used similar equations. We consider a non-dimensional
version of the system and introduce the dimensionless temperature, space
and time coordinates

u =
R0T

E2
, x ′ =

√
ρQ2A2R0

kE2
x , y ′ =

√
ρQ2A2R0

kE2
y , t ′ =

Q2A2R0

cpE2
t .



2 Mathematical model C98

Writing the system in terms of these dimensionless quantities and omitting
the primes, the dimensionless system of equations is

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
+ Ce−1/u − qrCe−f/u, (3)

∂C

∂t
=

1

Le

(
∂2C

∂x2
+
∂2C

∂y2

)
−ΘCe−1/u −ΘCre−f/u. (4)

with new parameters

Θ =
cpE2

R0Q2

, q =
Q1

Q2

, f =
E1

E2
, r =

A1

A2
, Le =

k

ρcpD
.

We refer to Θ as the exothermicity parameter, q as the ratio of heats, f as
the ratio of activation energies, r as the ratio of rate constants, and Le as the
Lewis number.

In the following section we explore two different domain configurations and
compare the behaviour of each configuration with the equivalent system in
one dimension.

2.1 Competitive reactions in a strip

We first explore a long strip domain. Mercer and Weber [4] explored a similar
problem with a one-step model. In addition to the system (3)–(4), we impose
insulating boundary conditions on the left (which is assumed to be at x = 0)
and right boundaries

∂u

∂x
= 0 and

∂C

∂x
= 0 at x = 0 and x→ ∞ .

We assume insulating boundaries at the top and bottom of the strip (y = 0
and y = H)

∂u

∂y
= 0 and

∂C

∂y
= 0 .
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2.2 Competitive reactions with axial symmetry

The second domain configuration is the infinite two-dimensional plane. How-
ever, we assume that the initial temperature profile is axially symmetric about
a point (which is assumed to be at the origin). As the system parameters do
not depend on the spatial coordinates, the solution retains the axial symmetry
as time progresses. This allows the problem to be simplified by changing to a
polar coordinate system

x = R cos θ , y = R sin θ ,

where R is the radius from the origin and θ is the angle from the x-axis in an
anticlockwise direction. The system then becomes

∂u

∂t
=
∂2u

∂R2
+
1

R

∂u

∂R
+
1

R2
∂2u

∂θ2
+ Ce−1/u − Cqre−f/u,

∂C

∂t
=

1

Le

(
∂2C

∂R2
+
1

R

∂C

∂R
+
1

R2
∂2C

∂θ2

)
−ΘCe−1/u −ΘCre−f/u.

Assuming axial symmetry, or no θ dependence, the system reduces to

∂u

∂t
=
∂2u

∂R2
+
1

R

∂u

∂R
+ Ce−1/u − Cqre−f/u, (5)

∂C

∂t
=

1

Le

(
∂2C

∂R2
+
1

R

∂C

∂R

)
−ΘCe−1/u −ΘCre−f/u. (6)

This system is valid for R > 0 . However, at R = 0 we also need to impose
the usual boundary condition that

∂u

∂R
=
∂C

∂R
= 0 .

The system with axial symmetry is numerically solved using the Method of
Lines, where the spatial derivatives are approximated by a finite difference
method and the resulting odes at each grid point are integrated using a
Runge–Kutta solver.
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2.3 Numerical solution of problem in 2D strip

Figures 1, 2 and 3 show the time evolution of a Gaussian initial temperature
in the two-dimensional strip, the axial symmetric two-dimensional strip, and
the one-dimensional domain. In these figures, the time is slightly different for
the one-dimensional plots to better align with the two-dimensional strip at
t = 1900 . There are three stages of the evolution:

1. Initially, the temperature profile is axially symmetric and remains
symmetric (see Figure 1).

2. In the medium term, the temperature profile begins interacting with
the top boundary (see Figure 2).

3. In the long term, the temperature profile loses vertical spatial depen-
dence and the behaviour is similar to the one-dimensional problem (see
Figure 3).

3 Travelling wave solutions

One of the areas of interest in many combustion problems is the behaviour
of propagating combustion waves. For one-dimensional problems, depending
on the reaction processes, there is a rich variety of travelling wave behaviour.
For different system parameters, there can be a transition of behavior. For
example, Sharples et al. [5] showed that for the one-dimensional exothermic-
endothermic reaction there is a route from travelling waves with a single
speed, to wave with an oscillatory speeds to a period doubling regime, to
extinction. There are also studies of other reaction systems which observed a
period doubling route to chaotic behaviour [2].
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(a) (b)

Figure 1: Evolution of Gaussian initial temperature profile in the three
domain configurations for Le = 5 , Θ = 3 , q = 1 , r = 1 and f = 2 at times
(a) t = 0 and (b) t = 400 for the two-dimensional insulated strip of height
H = 100 (upper frames) and axial symmetric domain (middle frames); and
(a) t = 0 and (b) t = 200 for the one-dimensional domain (lower frames).
Each domain is of length L = 400 and height H = 100 . The blue, green and
red colours represent the beginning, middle and end of the reaction zone.

4 Comparison between combustion in a 2D
strip and in other configurations

Figure 4 compares the locations of the Hopf and extinction curves of the one-
dimensional model [5], the two-dimensional model and the axially symmetric
model. The Hopf curve for the one-dimensional model is obtained by solving
the associated ordinary difference equations using the Evans function method,
while the extinction curve is obtained by directly solving the partial differential
equations (pde) using FlexPDETM and finding the exothermicity value where
no non-trivial solutions exist. There is good agreement between the Hopf
curves of the two-dimensional and one-dimensional problems. For a long
enough strip, the two-dimensional profile will evolve to a one-dimensional
profile in the long term. There is fair agreement with the axially symmetric
problem. There are slight differences in the locations of the extinction points
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(a) (b)

Figure 2: Evolution of Gaussian initial temperature profile in the three
domain configurations for Le = 5 , Θ = 3 , q = 1 , r = 1 and f = 2 at times
(a) t = 800 and (b) t = 1200 for the two-dimensional insulated strip of height
H = 100 (upper frames) and axial symmetric domain (middle frames); and
(a) t = 600 and (b) t = 1000 for the one-dimensional domain (lower frames).
Each domain is of length L = 400 and height H = 100 . The blue, green and
red colours represent the beginning, middle and end of the reaction zone.

in all three configurations. As mentioned by Watt et al. [6], the initial
temperature profile is important in determining whether extinction will occur.
The axially symmetric configuration requires a ‘hotter’ initial temperature
profile than the other two configurations for combustion to be sustainable.

5 Critical conditions on combustion in a 2D
strip

Section 4 shows that the behaviour of combustion in a strip is qualitatively
similar to the problem in one dimension. Certainly, in the adiabatic problem
considered here, a two-dimensional initial temperature profile quickly loses
spatial variation with respect to height and then behaves according to the
one-dimensional problem.
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(a) (b)

Figure 3: Evolution of Gaussian initial temperature profile in the three
domain configurations for Le = 5,Θ = 3,q = 1, r = 1 and f = 2 at times
(a) t = 1600 and (b) t = 1900 for the the two-dimensional insulated strip of
height H = 100 (upper frames) and axial symmetric domain (middle frames);
and (a) t = 1400 and (b) t = 1700 one-dimensional domain (lower frames).
Each domain is of length L = 400 and height H = 100 . The blue, green and
red colours represent the beginning, middle and end of the reaction zone.

We explore the effect of the height of the strip H has on the behaviour of the
full two-dimensional system (3)–(4). We choose parameters Le = 5 , Θ = 5 ,
L = 1000 , H = 250 , A = 1.5 and b = 0.005 , with the initial temperature
profile

u(x,y) = Ae−b(x
2+y2).

For these parameters, the one-dimensional system develops into a single speed
propagating wave. The two-dimensional problem was solved numerically using
FlexPDETM. In Figure 5 we see that there is good agreement between the
extinction curve of the two-dimensional and axially symmetric problems.

We now vary the strip height H and we see in Figure 6 that the critical
exothermicity quickly decays to an equilibrium value of Θ = 4.48 , which is
very close to the corresponding value of Θ = 4.50 for the axially symmetric
problem. This suggests that for a sufficiently tall strip, the combustion wave
develops as an axially symmetric wave before reaching the top of the strip.
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Figure 4: A comparison of the location of the Hopf point (hp) and the
extinction point (ep) in one-dimensional (1D), two-dimensional strip (2D)
and axially symmetric (Rad) configurations. The parameters are H = 100 ,
f = 2 , q = 1 and r = 1 .

Finally, we explore the critical initial temperature peak height A for a com-
bustion wave to propagate, as shown in Figure 7. Like Figure 6, the two-
dimensional and axially symmetric problems have similar behaviour. In
Figure 7 there is a critical initial temperature peak height that is approached
for large strip heights. For the two-dimensional problem, this critical height
is at A = 2.72 , whereas for the axially symmetric problem, A = 2.69 . Note
that the critical strip height is around H = 400 for the critical initial temper-
ature peak height, whereas it was around H = 200 for the critical extinction
exothermicity.

We do not explore the effect of parameters f, q or r on the long term behaviour



6 Conclusion C105

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 4  4.5  5  5.5  6  6.5  7  7.5

L
ew

is
 n

um
be

rs
 (

L
e)

Exothermicity (Θ)

Figure 5: The extinction curve for the two-dimensional problem as a function
of the Lewis number Le and exothermicity Θ with length L = 1000 , height
H = 250 and initial temperature peak height A = 1.5 . The green points
represent the extinction curve for the axially symmetric problem.

of a two-dimensional strip with varying height H. For the one-dimensional
problem, the effect of these parameters on the persistence of a combustion wave
solution was explored by others, such as Hmaidi, McIntosh, and Brindley [3]
and Sharples et al. [5].

6 Conclusion

We considered the behaviour of combustion process of an exothermic-endothermic
competitive reaction in a combustible material in a two-dimensional strip.
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Figure 6: The extinction curve for the two-dimensional problem as a function
of the strip height H with Le = 5 , L = 1000 and A = 1.5 . The blue and
purple points are the corresponding extinction points for the one-dimensional
and axially symmetric problems, respectively.

It was shown that for a combustion wave to persist, three of the important
parameters are the height of the strip, the magnitude of the initial temperate
profile and the ratio of the thermal and mass diffusivities defined by the
Lewis number. The success or failure of the combustion wave to propagate
is dependent on the state of the system once the combustion wave interacts
with the top boundary. If there is sufficient energy in the combustion wave,
then behaviour will follow the behaviour of an equivalent one-dimensional
problem.
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Figure 7: The critical initial temperature peak height A for the two-
dimensional problem as a function of the strip height H with Le = 5 , Θ = 5 ,
L = 1000 and A = 1.5 . The blue and purple points are the corresponding
critical initial condition heights for the one-dimensional and axially symmetric
problems, respectively.
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