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Quasi-Monte Carlo for finance beyond
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Abstract

Quasi-Monte Carlo methods are used to approximate integrals of
high dimensionality. However, if the problem under consideration is
of unbounded dimensionality, it is not obvious if one can apply quasi-
Monte Carlo methods at all. We introduce a hybrid approach com-
bining quasi-Monte Carlo and Monte Carlo methods and apply it to
a finance problem of unbounded dimensionality. We find that this
hybrid approach improves on a Monte Carlo approach.
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1 Introduction

Quasi-Monte Carlo (qmc) methods are techniques for high dimensional nu-
merical integration. The pricing of financial derivatives in Gaussian models
results in integration problems to which qmc methods are routinely applied
and significant reductions in computational effort have been observed [1,
e.g.]. However, the shortcomings of Gaussian models are well-known, and
from a finance point of view, the usage of jump diffusion models such as
the Kou model [4, e.g.] might be more appropriate. Yet, the pricing of fi-
nancial derivatives in the Kou model can result in problems of unbounded
dimensionality, and it is not obvious if qmc methods can be applied at all.

We show how to formulate the finance problem in such a way that qmc
methods can be applied. This allows us to enjoy the benefits associated
with qmc methods but also the advantages of using a model that is more
sophisticated than a Gaussian model.

Having recalled properties of qmc point sets and the Kou model and defined
lookback options in Section 2, Section 3 shows why the pricing of lookback
options in the Kou model can result in an integration problem of unbounded
dimensionality. Section 4 recalls stratification, a variance reduction tech-
nique, and uses it to construct a hybrid approach combining qmc and Monte
Carlo (mc) methods. Section 5 presents numerical results showing that the
hybrid approach outperforms the standard Monte Carlo approach.
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2 Quasi-Monte Carlo point sets and the

finance problem

We firstly recall some basic properties of qmc point sets and then introduce
the finance problem.

Qmc methods are equal weight integration formulas to estimate high dimen-
sional integrals over the unit cube. In mapping the integration problem to the
unit cube, we often need to invert probability distributions and we hence re-
call the well-known generalised inverse function, for example Glasserman [3,
p.55]: if Y ∼ F, then the generalised inverse of F, F−1(u), is

F−1(u) = inf {z ∈ R : F(z) > u} , u ∈ [0, 1] .

We point out that all generalised inverse functions needed for this paper are
available in standard computer packages such as matlab. Regarding the
qmc point sets, we make use of digital nets [6, e.g.] and randomize these
using a digital b-ary shift [6, e.g.] to compute standard errors.

Turning to the finance problem, we firstly recall properties of the Kou model [4,
e.g.]. We assume that we deal with a probability space (Ω, F, Pr) on which
we introduce the stochastic processes (Zt)t>0 and (St)t>0 in Definition 1.
The following density function is used in Definition 1:

f(x) = pη+ exp(−η+x)Ix>0 + (1− p)η− exp(η−x)Ix<0 , for all x ∈ R , (1)

where 0 6 p 6 1, η+ > 1 , η− > 0 . The cumulative distribution corre-
sponding to density f, denoted by F, is invertible and we denote its inverse
by F−1(u), u ∈ [0, 1]. The inverse is computed explicitly as

F−1(u) =
ln(u) − ln(1− p)

η−
Iu61−p +

ln(1− u) − ln(p)

−η+
Iu>1−p , u ∈ [0, 1] .

We also set µ = r− 1
2
σ2S − λ

∫
R(exp(x) − 1)f(x)dx , for σS ∈ R+, r ∈ R+.
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Definition 1 Let (Nt)t>0 be a Poisson process with intensity λ > 0 and
jump times (τi)

Nt
i=1 , (Wt)t>0 a Brownian motion and (Yk)k>1 independent,

identically distributed random variables with distribution F. Then

Zt = µt+ σSWt +

Nt∑
k=1

Yk (2)

and, for S0 ∈ R+,
St = S0 exp(Zt) . (3)

Of course (St)t>0 is the stock price process. We now focus on the financial
derivative relevant for this article. We deal with a particular lookback option,
a continuously monitored lookback put option with floating strike price, from
now on referred to as the lookback option. Its pay-off at time T is

max
(
B, max

06t6T
St

)
− ST

where B ∈ R+, B > S0 , T ∈ R+, and its price by

E
[
e−rT

(
max

(
B, max

06t6T
St

)
− ST

)]
= E

[
e−rT max

(
B, max

06t6T
St

)]
− S0 .

So the integration problem is reduced to approximating

E
[
exp(−rT) max

(
B, max

06t6T
St

)]
(4)

and we denote
V = exp(−rT) max

(
B, max

06t6T
St

)
; (5)

being constant, exp(−rT) does not contribute to the computational perfor-
mance though. We now show how to estimate prices of lookback options,
assuming that the stock price is (3).
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3 Monte Carlo approach to pricing lookback

options in the Kou model

We show how to price a lookback option in the Kou model using a Monte
Carlo approach. This seems new, most likely due to the closed form solutions
for prices of lookback options in the Kou model that are available in terms
of special functions [4]. However, the methodology presented in this section
is not limited to the Kou model: instead of assuming that jumps follow (1),
any distribution that can be simulated can be used. We make the convention
that τ0 = 0 and τNT +1 = T .

We recall the definition (5) of V and denote independent, identically dis-
tributed copies of V by Vi, i = 1, . . . ,nmc , nmc ∈ Z+, so nmc corresponds to
the number of function evaluations for the naive mc approach. Then

Imc =
1

nmc

nmc∑
i=1

Vi (6)

is an unbiased estimator of E[V] and an unbiased estimator of its variance is

σ2mc =
1

nmc(nmc − 1)

nmc∑
i=1

(Vi − Imc)
2 . (7)

However, the simulation of Vi, i = 1, . . . ,nmc , is not immediately obvious
and is explained below. The following notation is introduced:

Ml = max
τl−16t<τl

St , l = 1, . . . ,NT + 1 ,

and we define the σ-algebra

F∗ = σ
(
(Nt)t∈[0,T ], (Yl)

NT
l=1, (Wτl

)NT
l=1,WT

)
,

that is the smallest σ-algebra with respect to which (Nt)t∈[0,T ], (Yl)
NT
l=1,

(Wτl
)NT
l=1 and WT are measurable. We express

E[V] = E
{

E
[
exp(−rT) max

(
B, max

l=1,...,NT +1
Ml

) ∣∣∣F∗]] . (8)
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The equality (8) suggests that one can simulate V by simulating (Ml)
NT +1
l=1 .

To be able to generate the Ml, we need to know their distributions and be
able to invert these. This is addressed in the next lemma, parts 2 and 3,
where we set Sτ−

l
= Sl− and Sτl−1

= Sl−1 , l = 1, . . . ,NT + 1 .

Lemma 2 The following properties hold

1. Conditional on F∗, the (Ml)
NT +1
l=1 are independent.

2. The distribution of Ml, conditional on F∗, FMl
, is

FMl
(b) = Pr (Ml 6 b | F∗)

= (1− exp(−
2(ln(Sl−) − ln(b))(ln(Sl−1) − ln(b))

(τl − τl−1)σ
2
S

))Ib>max(Sl− ,Sl−1) .

3. The inverse of FMl
, F−1

Ml
, is

ln(F−1
Ml

(u))

=
ln(Sl−Sl−1) +

√
(ln(Sl−) − ln(Sl−1))2 − 2(τl − τl−1)σ

2
S ln(1− u)

2
.

Proof: Parts 1 and 2 are given by Cont and Tankov [2, p.177]; Part 3
follows from Part 2. ♠

Next, recall that if Y follows the Beta distribution with parameters a and b,
Y ∼ Beta(a,b), then its density is

f(x) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1 , 0 6 x 6 1 , (9)

and the inverse of its distribution is denoted by F−1
Beta(u,a,b). Regarding

notation, if X is normal with mean µ and variance σ2, we write X ∼ N(µ,σ2),
and the inverse of its distribution is denoted by F−1

N (u,µ,σ2). If Y is Poisson
with rate λ, we write Y ∼ P(λ), and the inverse of its distribution is denoted
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by F−1
P (u, λ). Finally we state the following lemma (for example, Ross [7,

Theorem 5.2 and Example 2.38]).

Lemma 3 Conditional on NT = n , τl = a , τm = b , 0 6 a < b 6 T and
0 6 l < m 6 n+ 1 , the law of (τl+o)

m−l−1
o=1 is

τl+o − τl

τm − τl
∼ Beta(o,m− l− o) , o = 1, . . . ,m− l− 1 .

We are now in a position to state the algorithm showing how to obtain one
realisation of V , which is needed for the (Vi)

nmc
i=1 in (6).

Algorithm 1: Algorithm to simulate V

1. Simulate NT ∼ P(λT)

2. for l = 1 : NT
• Simulate τl−τl−1

T−τl−1
∼ Beta(1,NT − (l− 1))

• Simulate Yl ∼ F

• Simulate Wτl
−Wτl−1

∼ N(0, τl − τl−1)
• Simulate Ml ∼ FMl

3. end
4. Simulate WT −WτNT

∼ N(0, T − τNT
)

5. Simulate MNT +1 ∼ FMNT +1

6. Set V = exp(−rT) max(B,M1, . . . ,MNT +1)

The following remark shows that for purposes of qmc, Algorithm 1 is not
useful.

Remark 4 We note that the formulation of the problem provided by Algo-
rithm 1 is not suitable for qmc methods. This is because NT is not bounded
resulting in a problem whose dimension is very high, in principle infinite.
Furthermore, dealing with a qmc point set, a particular dimension should
correspond always to the same random variable, else the favourable unifor-
mity properties of the qmc point set are not preserved. Algorithm 1 does
not ensure this.
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4 Hybrid approach to pricing lookback

options in the Kou model

We show how to price lookback options in the Kou model by combining
qmc and mc methods, a hybrid approach. The hybrid approach is based
on stratification—a well-known variance reduction technique described, for
example, by Glasserman [3], Stratification is a technique constraining the
fraction of observations drawn from specific subsets (strata) of the sample
space. For the purposes of our problem, we fix k∗ ∈ Z+ and choose the
following k∗+2 strata: {NT = k}

k∗

k=0 and {NT > k
∗}. Consequently, we rewrite

E[V] =

k∗∑
k=0

E[V |NT = k] Pr(NT = k) + E[V |NT > k
∗] Pr(NT > k

∗) . (10)

We note though that using Black–Scholes arguments, we arrive at a closed
form solution for E[V |NT = 0], denoted by I0, hence there is no need to
estimate E[V |NT = 0]. In addition, we set pk = Pr(NT = k), k = 0, . . . ,k∗

and pk∗+1 = Pr(NT > k
∗) and define the following random variables, where

B(R) denotes the Borel σ-algebra on R

Definition 5 Let k∗ ∈ Z+ and S ∈ B(R), then Ṽk, k = 0, . . . ,k∗ + 1 are
random variables with respective laws

Pr(Ṽk ∈ S) = Pr(V ∈ S |NT = k) , k = 0, . . . ,k∗,

and
Pr(Ṽk∗+1 ∈ S) = Pr(V ∈ S |NT > k

∗) .

With this definition, (10) becomes

E[V] =

k∗+1∑
k=0

E[Ṽk]pk . (11)
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Recall Remark 4, stating that the naive mc approach is not suitable for
qmc methods, as it results in problems of unbounded dimensionality and
the allocation of variables to dimensions is not fixed. However, considering
formulation (11), the E[Ṽk], k = 1, . . . ,k∗, are each of fixed dimension and it
is possible to allocate a particular dimension to a particular random variable.
Consequently, we formulate E[Ṽk], k = 1, . . . ,k∗, as integration problems and
apply qmc methods to them. Of course E[Ṽk∗+1] is still of unbounded dimen-
sion and it is not possible to allocate a particular dimension to a particular
random variable, so E[Ṽk∗+1] cannot be estimated using qmc methods. In-
stead mc methods will still be used. We now state the integration problem
for k = 1 , but the same reasoning holds for k = 2, . . . ,k∗.

E[Ṽ1] = E
[
Ṽ1(τ1, Y1,Wτ1

,M1,WT ,M2, 1)
]

=

∫ 1
u1=0

· · ·
∫ 1
u6=0

Ṽ1

{
TF−1

Beta(u1, 1, 1), F
−1
J (u2),

F−1
N

[
u3, 0, TF

−1
Beta(u1, 1, 1)

]
, F−1
M1

(u4,u1,u3), F
−1
N

[
u3, 0, TF

−1
Beta(u1, 1, 1)

]
+ F−1

N

[
u5, 0, T − TF−1

Beta(u1, 1, 1)
]
, F−1
M2

(u6,u1,u2,u3,u5)
}
du6 . . .du1

where F−1
M1

(u4,u1,u3) = exp
[
a(u4,u1,u3)

]
and

a(u4,u1,u3)

=
ln[S1−(u1,u3)S0] +

√[
ln(S1−(u1,u3)) − ln(S0)

]2
− 2τ1(u1)σ

2
S ln(1− u4)

2

where S1−(u1,u3) = S0 exp
{
µTF−1

Beta(u1, 1, 1)+σSF
−1
N

[
u3, 0, TF

−1
Beta(u1, 1, 1)

]}
and τ1(u1) = TF−1

Beta(u1, 1, 1). The formula for F−1
M2

(u6,u1,u2,u3,u5) can be
derived using similar arguments.

Given a digital net in base b, (ui)
n
i=1, ui ∈ [0, 1]6, and q independent random

vectors ∆j, j = 1, . . . ,q uniformly distributed in [0, 1]6, we randomize (ui)
n
i=1

using a digital b-ary shift [6, e.g.], where ⊕ means that for each dimension,



4 Hybrid approach to pricing lookback options in the Kou model C893

we perform the digit-wise addition modulo b.

E[Ṽ1] ≈
1

q

q∑
j=1

1

n

n∑
i=1

Ṽ1

{
TF−1

Beta(ui1 ⊕ ∆j1, 1, 1), F−1
J (ui2 ⊕ ∆j2),

F−1
N (ui3 ⊕ ∆j3, 0, TF−1

Beta(ui1 ⊕ ∆j1, 1, 1)),
F−1
M1

(ui4 ⊕ ∆j4,ui1 ⊕ ∆j1,ui3 ⊕ ∆j3),
F−1
N (ui3 ⊕ ∆j3, 0, TF−1

Beta(ui1 ⊕ ∆j1, 1, 1))
+F−1

N (ui4 ⊕ ∆j4, 0, T − TF−1
Beta(ui1 ⊕ ∆j1, 1, 1)),

F−1
M2

(ui6 ⊕ ∆j6,ui1 ⊕ ∆j1,ui2 ⊕ ∆j2,ui3 ⊕ ∆j3,ui5 ⊕ ∆j5)
}

.

We hence get the following unbiased estimator for

E[Ṽ1] ≈
1

q

q∑
j=1

1

n

n∑
i=1

Ṽ1(ui ⊕ ∆j) = I1 .

Generalising this argument and using mutually independent ∆kj , j = 1, . . . ,q ,
k = 1, . . . ,k∗, we obtain

Ik =
1

q

q∑
j=1

Ikj =
1

q

q∑
j=1

1

nk

nk∑
i=1

Ṽk(ui ⊕ ∆kj ) , k = 1, . . . ,k∗,

which are unbiased estimators for E[Ṽk] and we define the hybrid estimator

Ihyb =

k∗+1∑
k=0

Ikpk .

As E[Ṽk∗+1] is estimated using mc methods, Ik∗+1 is defined via

Ik∗+1 =
1

nk∗+1

nk∗+1∑
i=1

Ṽk∗+1,i .



4 Hybrid approach to pricing lookback options in the Kou model C894

The simulation of Ṽk∗+1 is detailed below. We now comment on the choice
of the nk, k = 1, . . . ,k∗. We fix the total number of function evaluations for
the hybrid approach to be q × n and set nk = bpknc, k = 1, . . . ,k∗. The
case Ik∗+1 is treated separately, as E[Ṽk∗+1] is estimated via mc methods:
We set nk∗+1, the total number of function evaluations to be used for Ik∗+1,
to be nk∗+1 = nq − q

∑k∗

k=1 nk . Of course Ihyb is an unbiased estimator
of E[V] and by the independence of the random variables ∆kj , j = 1, . . . ,q ,
k = 1, . . . ,k∗, it follows that the variance of Ihyb is

Var(Ihyb) =

k∗+1∑
k=1

Var(Ik)p
2
k ,

and an unbiased estimator of Var(Ihyb) is

σ2HYB =

k∗∑
k=1

[
1

q(q− 1)

q∑
j=1

(Ikj − Ik)
2

]
p2k + σ2k∗+1p

2
k∗+1 (12)

where

σ2k∗+1 =
1

nk∗+1(nk∗+1 − 1)

nk∗+1∑
i=1

(Ik∗+1 − Ṽk∗+1,i)
2 ,

with nk∗+1 = nq−q
∑k∗

k=1 nk . Computing Ihyb, we need to be able to obtain
Ṽk(u ⊕ ∆), k = 1, . . . ,k∗, for a qmc point u ∈ [0, 1]4k+2 and ∆ uniformly
distributed in [0, 1]4k+2, which is shown in Algorithm 2.

For Ik∗+1, which is estimated using mc methods, we make the following
minor modification to Algorithm 1 to simulate Ṽk∗+1: we replace step 1 by
“Simulate NT conditional on NT > k

∗”, which requires us to simulate from
conditional distributions, for example Glasserman [3, p.57], and leave the
rest of Algorithm 1 unchanged.
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Algorithm 2: Algorithm to obtain Ṽk(u⊕ ∆)

1. for l = 1 : k

• τl = τl−1 + (T − τl−1)F
−1
Beta(u4(l−1)+1 ⊕ ∆4(l−1)+1, 1,k− (l− 1))

• Yl = F−1(u4(l−1)+2 ⊕ ∆4(l−1)+2)
• Wτl

= Wτl−1
+ F−1

N (u4(l−1)+3 ⊕ ∆4(l−1)+3, 0, τl)
• Ml = F−1

Ml
(u4(l−1)+4 ⊕ ∆4(l−1)+4)

2. end
3. WT = Wτk

+ F−1
N (u4(k−1)+5 ⊕ ∆4(k−1)+5, 0, T − τk)

4. Mk+1 = F−1
Mk+1

(u4(k−1)+6 ⊕ ∆4(k−1)+6)
5. Set Ṽk(u⊕ ∆) = exp(−rT) max(B,M1, . . . ,Mk+1)

5 Numerical results and conclusion

We compare the approaches introduced in Sections 3 and 4. The following set
of parameters is taken from Kou and Wang [4]. We set B = 110 , S0 = 100 ,
T = 1 and r = 0.05 , λ = 3 , σS = 0.2 , p = 0.3 , η+ = 50 and η− = 25

in (2). For the hybrid approach, we need to choose k∗. We base our choices
on the expected number of jumps on [0, T ], three in this case, and choose
k∗1 = 4 and k∗2 = 8 . The results presented in Table 1 were achieved as
follows. For the hybrid approach (hyb), we vary n as shown in the table
and set q = 30 in (12). To ensure the same numbers of function evaluations
are used for both approaches, we set nMC = q × n for the Monte Carlo
approach (mc). We choose Sobol points, a digital net in base two, as our
qmc point set. Standard errors were computed using (7) and (12), results for
k∗2 = 8 are given in brackets. Table 1 shows that the hybrid approach clearly
outperforms the Monte Carlo approach and that increasing k∗ results in a
decrease in standard errors, and seemingly an improved rate of convergence.

In conclusion, the hybrid approach allows us to apply qmc methods to the
pricing of financial derivatives in the Kou model. This means that we can
reduce the computational effort associated with a sophisticated model, an
important consideration for practitioners. Looking ahead, many other mod-
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n = 256 n = 1024 n = 4096 n = 16384

mc 0.1713 0.0868 0.0433 0.0217
hyb 0.0970 (0.0916 ) 0.0402 (0.0346) 0.0169 (0.0106) 0.0083 (0.0047)

Table 1: Standard errors for the mc point set based on q × n points and
the qmc point set based on n points, q random shifts and k∗1 = 4 (k∗2 = 8).

els, arguably more sophisticated than the Kou model, have appeared in the
literature [5, e.g.]. Studying how to reduce the associated computational
effort using qmc methods is an exciting area of future research.
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