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Convergence analysis of inertial lift force
estimates using the finite element method
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Abstract

We conduct a convergence analysis for the estimation of inertial
lift force on a spherical particle suspended in flow through a straight
square duct using the finite element method. Specifically, we consider
the convergence of an inertial lift force approximation with respect to a
range of factors including the truncation of the domain, the resolution
of the tetrahedral mesh and the boundary conditions imposed at the
(truncated) ends of the domain. Additionally, we compare estimates
obtained via the Lorentz reciprocal theorem with those obtained via a
direct integration of fluid stress over the particle surface.
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1 Introduction

Inertial lift force is a phenomena which perturbs the motion of particles/cells
suspended in fluid flow through micro-scale devices from the fluid streamlines.
This is exploited in a range of medical technologies including the separation
and identification of circulating tumour cells [14]. Over many decades inertial
lift has been studied analytically for simple flows bounded by two walls [e.g.
7, 12, 2], but for flows in devices of practical interest it is generally necessary
to compute estimates of the inertial lift force.

Many methods for estimating the inertial lift force on a particle have been
developed and investigated including, but not limited to, immersed boundary
finite difference methods [10], direct forcing fictitious domain methods [15,
11], spectral methods [16], and finite element methods [3]. Typically these
methods are used in studies which solve the full Navier–Stokes equations

ρ (∂u/∂t+ u · ∇u) = ∇ · [−pI+ µ (∇u+∇uᵀ)] − ρg , ∇ · u = 0 , (1)

where ρ, µ,p, u, g and I denote the fluid density, fluid viscosity, pressure field,
velocity field, acceleration due to gravity and identity tensor, respectively,
over a range of Reynolds numbers. We are interested in the estimation of
the inertial lift force via a perturbation expansion of the Navier–Stokes with
respect to the particle Reynolds number and using a variant of the Lorentz



2 Background C67

reciprocal theorem, as described by Hood et al. [9]. While our research
interest is particle migration within curved ducts [5, 6], here we investigate
the simpler case of straight square ducts noting that most of the observations
are transferable.

We examine various aspects affecting the convergence of the inertial lift force
when approximated via the solution of several Stokes equations with the finite
element method. Section 2 provides a brief account of how the inertial lift
force is estimated. A more detailed derivation and explanation is provided
by Hood et al. [9], only parts essential to our investigation are repeated in
Section 2. Section 3 provides the results of a convergence analysis for the
finite element code which was developed within the open source computing
platform fenics [1]. Lastly, we summarise our findings and discuss aspects
of the computation that could be investigated further.

2 Background

Suppose ` denotes the side length of a square cross-section, then, without loss
of generality, we take the duct interior to be D = {x = (x,y, z) ∈ R3 : x, z ∈
[−`/2, `/2]} . The fluid is pumped through the duct via a (constant) pressure
gradient to produce a laminar Poiseuille flow. A solid/rigid spherical particle
with radius a and density ρp = ρ is suspended in the flow inside the duct. The
location of the particle’s centre is denoted as xp = (xp,yp, zp) . Necessarily
one has xp, zp ∈ [−`/2+a, `/2−a] and, without loss of generality, we assume
yp = 0 (at time t = 0). Figure 1 depicts the setup. The fluid domain is then
F = {x ∈ D : ‖x− xp‖2 > a} . Since the particle is neutrally buoyant and the
flow is pressure driven, gravity has no influence on the fluid or particle motion
and is neglected. The particle has a velocity up = (up, vp,wp) such that
up = wp = 0 and vp = ∂yp/∂t is constant. Additionally, the particle is free to
spin about its centre with (constant) angular velocity Ωp = (Ωp,x,Ωp,y,Ωp,z)
with Ωp,y = 0 .
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Figure 1: The setup of the duct (with axes in the centre).

It is useful to separate the fluid flow defined by the pressure and velocity
fields p,u into a background flow p̄, ū (defined on D), which denotes the
steady laminar flow in the absence of a particle, and a disturbance flow
q, v (defined on F), which is the difference caused by the presence of the
particle. The background flow has pressure p̄ = P0 − Py , for some constants
P0 and P > 0 , and velocity ū satisfying ∇2ū = −(P/µ)ey with the boundary
conditions ū = 0 on ∂D. With ū = (ū, v̄, w̄) it is straightforward to show
that ū = w̄ = 0 and

v̄ =
P

µ

∞∑
k=0

4`2(−1)k

π3(2k+ 1)3
cos[(2k+ 1)πx/`]

(
1−

cosh((2k+ 1)πz/`)
cosh((2k+ 1)π/2)

)
.

It is also convenient to work in a frame of reference translating in the y di-
rection such that the particle remains fixed. In this moving frame, the fluid
domain F remains static/fixed and, given up,Ωp as described above, the
system is steady (such that ∂v/∂t = 0). Consequently, in this reference frame,
it can be shown that q, v satisfy

∇ · [−qI+ µ (∇v+∇vᵀ)] = ρ(v+ ū− up) · ∇(v+ ū) on F, (2a)
∇ · v = 0 on F, (2b)
v = 0 on ∂D, (2c)
v = up − ū+Ωp × (x− xp) on ∂(D\F). (2d)

While we assume that up = wp = 0 , our goal is to estimate the hydrodynamic
force on the particle in the x, z directions which ultimately leads to a non-zero
(albeit small) up,wp.
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While the governing equations are described in a dimensional setting, it
is straightforward to non-dimensionalise with the length scale a, velocity
scale Ua/` and pressure scale µU/`, where U := v̄(0) . The right side of (2a)
is then found to scale with the particle Reynolds number Rep = (ρ/µ)Ua2/`
relative to the left side. When Rep is expected to be small, rather than
solve (2) directly we instead make use of a perturbation expansion such that
only a few Stokes’ problems need to be solved in order to approximate the
inertial lift force. We continue to describe this process in a dimensional setting
to avoid introducing additional notation.

Given a flow p,u on F, the hydrodynamic force and torque on the particle
are

F(p,u) =
∫
|x−xp|=a

n · [−pI+ µ(∇u+∇uᵀ)]dS ,

T (p,u) =
∫
|x−xp|=a

(x− xp)×
(
n · [−pI+ µ(∇u+∇uᵀ)]

)
dS ,

where the normal n is taken to be outward pointing from the particle centre. It
can be shown that F(p̄, ū) = T (p̄, ū) = 0 and therefore only the disturbance
flow q, v influences the particle motion. For convenience we define the
mappings P(f,b) and U(f,b) which, given the vector fields f and b defined
on the fluid domain F and particle surface ∂(D\F), respectively, give the
(unique) pressure and velocity fields that satisfy

∇ ·
(
− P(f,b)I+ µ [∇U(f,b) +∇U(f,b)ᵀ]

)
= f on F, (3a)

∇ ·U(f,b) = 0 on F, (3b)
U(f,b) = 0 on ∂D, (3c)
U(f,b) = b on ∂(D\F). (3d)

We are now equipped to describe the process of estimating the inertial lift force.
First one needs to solve the leading order approximation of the disturbance
flow,

q0, v0 := P(0,b0),U(0,b0) , where b0 = up − ū+Ωp × (x− xp) ,
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with the particle velocity and spin such that the system is in equilibrium,
that is F(q0, v0) = T (q0, v0) = 0 . Given the linearity of Stokes’ equation,
and some components of up,Ωp being zero, the leading order approximation
is solved by the following steps.

1. Solve each of q0,k, v0,k := P(0,b0,k),U(0,b0,k) for k = 1, 2, 3, 4 where

b0,1 = ey , b0,2 = ex × (x− xp) ,
b0,3 = ez × (x− xp) , b0,4 = ū .

2. Compute Fk := F(q0,k, v0,k) and T k := T (q0,k, v0,k) for k = 1, 2, 3, 4 and
solve the linear system

(vpF1 +Ωp,xF2 +Ωp,zF3 − F4) · ey = 0 , (4a)
(vpT 1 +Ωp,xT 2 +Ωp,zT 3 − T 4) · ex = 0 , (4b)
(vpT 1 +Ωp,xT 2 +Ωp,zT 3 − T 4) · ez = 0 . (4c)

3. Set v0 = vpv0,1 +Ωp,xv0,2 +Ωp,zv0,3 − v0,4 and similarly for q0.

The inertial lift force is now computed by solving for the first correction to
the leading order disturbance flow. Specifically, let

f1 = ρ[(v0 + ū− vpey) · ∇v0 + v0 · ∇ū] , (5)

which is equivalent to the right side of (2a). The first correction for the
disturbance flow is then

q1, v1 := P(f1, 0),U(f1, 0) .

In (5) we include the term −vpez · ∇v0 which is absent in the derivation of
Hood et al. [9] but can be found in that of Hogg [8]. The inertial lift force
can be computed directly as F(q1, v1) (noting it is the x, z components that
are of principal interest). However, rather than take this direct approach,
here the inertial lift force is computed without explicitly solving for q1, v1.
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In particular, let ûx := U(0,ex) and ûz := U(0,ez) , then a variant of the
Lorentz reciprocal theorem is used to show that

ex · F(q1, v1) = −

∫
F

ûx · f1 dV , and ez · F(q1, v1) = −

∫
F

ûz · f1 dV . (6)

Again we refer the reader to Hood et al. [9] for further details.

This second approach may initially appear to be more effort since two Stokes’
problems need to be solved (i.e. to find ûx and ûz) as opposed to one (for
q1, v1). However, one would generally want to compute ûx and ûz (and the
corresponding pressure fields p̂x, p̂z) regardless in order to estimate the drag
coefficients on the particle in the x, z directions. For instance, these drag
coefficients can then be used to determine the terminal migration velocity a
particle may achieve as a result of the inertial lift force. In this context, the
application of the Lorentz reciprocal theorem then provides a computational
saving. Furthermore, whilst beyond the scope of this article, it is a far more
convenient form to use for further analysis since linear expansions of v0 can
be substituted into equation (5) and subsequently (6) to obtain a wealth of
additional information about the inertial lift force at very little cost. Lastly,
the results that follow demonstrate the computation of inertial lift force via
the Lorentz reciprocal theorem is typically more accurate than the direct
estimate.

3 Results

The standard weak formulation of Stokes’ equations (3) are solved using
the finite element method implemented within the open source computing
platform fenics [1]. The domain is truncated in the y direction and two
different boundary conditions are considered at the two ends: a ‘natural’
boundary condition which enforces zero normal stress, and a ‘zero’ boundary
condition which enforces no-slip and no-penetration. In the latter case, the
∇Uᵀ term is dropped from the weak formulation whereas it must remain
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for ‘natural’ boundary conditions. Conformal tetrahedral meshes of the
(truncated) domain are generated using the gmsh software [4]. The mesh
resolution is made to be much coarser at the ends since the disturbance flow is
expected to decay away from the particle. This is a particular computational
advantage from formulating the problem in terms of the disturbance flow.
Taylor–Hood elements are used [13], that is first/second order Lagrange
elements for the pressure/velocity spaces, respectively. The minres algorithm
is used to solve the resulting linear system using an algebraic multi-grid
preconditioner based on the mass matrix. In order to estimate the error in
the solution (for a given mesh resolution) the same problem is solved using
second/third order Lagrange elements for pressure/velocity, respectively. The
solution from the lower order space is then projected into the higher order
space so that the relative difference between the two can be computed.

All computations in this section consist of a particle with radius a = 0.2
located at xp = (0.2, 0.0, 0.4) within a duct having side length ` = 2 . The
duct is truncated at a distance 4` either side of the particle (i.e. with total
length 8` = 16) except where convergence with respect to domain length is
considered. Each mesh is non-uniform with surface elements whose edges are
approximately five times smaller on the particle boundary compared to at the
two ends of the duct. The relative degree of refinement, denoted here as h, is
taken to be the ratio of the cube root of the average cell volume compared to
those in the coarsest mesh (consisting of ≈ 1.9× 104 tetrahedra compared to
the finest mesh which has ≈ 1.6× 106 tetrahedra).

We begin by examining mesh convergence with ‘zero’ boundary conditions at
the ends of the duct (results were similar for ‘natural’ boundary conditions
and are omitted). Figure 2(a) shows the relative convergence in q0, v0 as solid
green and blue lines, respectively. The dashed green and blue lines show the
slope of h2 and h3, respectively and demonstrate that convergence in q0, v0
is second and third order, respectively, as expected for linear and quadratic
elements. Observe that v0 is reasonably accurate even on the coarsest mesh.

Figure 2(b) shows the relative convergence of F4 · ey , T 4 · ex and T 4 · ez in
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Figure 2: Mesh convergence in: (a) the leading order disturbance flow solution
q0, v0; (b) representative force and torque coefficients that determine the spin
and velocity of the particle; and (c) the x, z components of the inertial lift
force on the particle. See text for further details.

blue, green and red, respectively. These are representative of the coefficients
that are used to determine the velocity and spin of the particle in equation (4).
Because force and torque coefficients depend on the pressure, it is reasonable
to expect h2 convergence, as indicated by the dashed black line, and the
results seem consistent with this, if not slightly better.

Figure 2(c) shows the relative convergence of the x, z components of the
inertial lift force in blue and green, respectively. The solid and dotted lines
are the results of the reciprocal and direct calculations, respectively. The
dashed black line has slope h3 and seems to be a reasonable fit. This is
somewhat surprising because of the dependence of the inertial lift on the
gradient of the velocity field v0 which leads one to expect convergence at
the rate h2. Note that the reciprocal result is generally more accurate than
the direct result. The error of both calculations is less than 1% for meshes
with approximately 1.5 × 105 tetrahedra or more. There is some noise in
the reciprocal result on the finer meshes which we expect is due to the finite
accuracy of our estimate of the inertial lift force on the finest mesh.

The main difference due to the choice of boundary condition was observed
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Figure 3: Convergence with respect to duct length for: (a) drag and torque
coefficients in the case of ‘natural’ boundary conditions; (b) drag and torque
coefficients in the case of ‘zero’ boundary conditions; and (c) inertial lift force
estimates in the case of ‘zero’ boundary conditions. See text for details.

in examining convergence with respect to duct length. The drag coefficient
in the y direction is especially affected. In the case of ‘natural’ boundary
conditions the solution U(0,ey) does not completely decay at the ends since
the imposed motion of the particle drags a small volume of liquid through
the duct with it. In contrast, this cannot occur when no-slip/penetration is
enforced at the ends, and ultimately results in a larger drag coefficient.

Figure 3(a) shows the relative convergence of each of F4 ·ey , T 4 ·ex and T 4 ·ez
in blue, green and red, respectively, with respect to duct length in the case of
‘natural’ boundary conditions. The (local) mesh resolution was not changed as
the duct length increased so that longer ducts contain additional tetrahedra
and the convergence primarily reflects the duct length. Interestingly, we
observe that since both F1 · ey and F4 · ey are effected in a similar way, the
resulting particle velocity vp obtained via (4) remains accurate independent
of the duct length (up to mesh resolution).

In contrast to Figure 3(a), Figure 3(b) shows no convergence in the same
coefficients when ‘zero’ boundary conditions are applied. However, the ‘zero’
boundary conditions results are more accurate to begin with and are essentially
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already converged up to the given mesh resolution. Furthermore, we find that
the resulting inertial lift estimates do not vary significantly. This is evident
in Figure 3(c) which shows the x, z components of the inertial lift force in
blue and green, respectively, with solid and dotted lines denoting the result of
the reciprocal and direct calculations, respectively. This suggests that much
shorter duct lengths can be used in the case of ‘zero’ boundary conditions
without losing accuracy.

4 Conclusions

We examined the convergence of a finite element code for estimating inertial lift
forces with respect to mesh resolution, duct length and boundary conditions.
From these results we conclude that imposing ‘zero’ boundary conditions on
the ends and using the reciprocal equation to estimate the inertial lift force is
the most robust approach. Going forward we could further optimise the local
size/distribution of tetrahedra over the domain, potentially via an analysis of
the adjoint problem. The use of periodic boundary conditions at the ends
could also be considered. An evaluation of the validity of the perturbation
approximation to the inertial lift force with respect to Rep would also be
valuable.
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