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A method for estimating the potential
long-range predictability of precipitation over

Western Australia
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Abstract

A methodology for estimating the potential predictability of sea-
sonal mean climate variables where the daily data consist of dichoto-
mous (on/off) events, such as precipitation, is described and applied
to Western Australian rainfall for the period 1951–2000. The method
relies on determining an estimate for the intermonth correlations for
precipitation and utilizes a stochastic, two state, first order, Markov
chain model fitted to the daily data.
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1 Introduction

Zheng et al. [9] proposed a methodology to estimate the potential predictabil-
ity of seasonal mean climate data. This method uses monthly data within
the season to estimate the amount of the total interannual variance in the
seasonal mean due to chaotic processes, acting on a subseasonal time scale,
and processes acting on a much longer time scale (interannual). It is there-
fore convenient to conceptualise the seasonal mean data as consisting of a
slow component, which is potentially predictable, and a chaotic component,
largely related to intraseasonal processes, which is unpredictable and referred
to as the intraseasonal component [2]. The potential predictability of the cli-
mate variable is defined as the proportion of the total variance not associated
with the intraseasonal component.

However, the methodology assumes stationarity in the monthly statistics
based on the assumption that the underlying daily time series are approxi-
mately first order autoregressive (ar1). Such assumptions do not in general
hold for climate data such as precipitation when the daily data consist of
dichotomous (on/off) events. Madden et al. [6] estimated the predictability
of New Zealand rainfall using a generalized chain dependent process to model
the daily precipitation data. Zheng and Frederiksen [8] derived predictable
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patterns of New Zealand rainfall by ranking the monthly precipitation into a
finite number of categories. Here we present a new methodology that extends
the methods of Madden et al. [6] and Zheng et al. [9] to allow for dichotomous
events. It relies on using daily data to estimate the intermonth correlation
between monthly means of the rainfall within a season. In this article we use
this method to estimate the potential predictability of Western Australian
seasonal rainfall.

2 Methodology

2.1 Estimating the intraseasonal component of
variability

A crucial step, in the estimation of the long range potential predictability of
seasonal mean climate data, is to estimate the interannual variability of the
climate ‘noise’, or the intraseasonal component of interannual variability [2,
9]. For this purpose, a useful statistical model, using monthly data, is [2, 9]

xym = µy + εym , (1)

where xym represent monthly anomalies of a climate variable, with the an-
nual cycle removed, in year y (y = 1, . . . , Y) and month m (m = 1, 2, 3)
of the season; µy is the seasonal population mean in year y which is asso-
ciated with very slowly varying external forcing or internal dynamics and
is therefore potentially predictable; εym is a monthly departure represent-
ing the intraseasonal, or essentially unpredictable, component. The vector
{εy1, εy2, εy3} is assumed to comprise a stationary and independent random
vector with respect to year [5].

Equation (1) implies that month-to-month fluctuations, or intraseasonal
variability, arise entirely from this component (xy1 − xy2 = εy1 − εy2 for
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Figure 1: Intermonth correlation φ̂12 for all months 1951–2000.
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example). We use the convention that an average over any index is repre-
sented by a circle subscript. For example, xy◦ is an average over all months
in the season, and x◦◦ is an average over all months and years. The symbol V
denotes the interannual variance for a single variable, for example V(xym),
or the intermonth covariance for two variables, for example V(xym, xyn). For
the intraseasonal component, σ2m and φmn represent the interannual vari-
ance in month m and the intermonth correlation between months m and n,
respectively. Thus

φmn =
V(εym, εyn)

σmσn
. (2)

The variance of the seasonal mean of the intraseasonal component is then

V(εy◦) = E

(1
3

3∑
m=1

εym

)2
=

1

9

(
σ21 + σ22 + σ23 + 2σ1σ2φ12 + 2σ2σ3φ23 + 2σ1σ3φ13

)
, (3)

where E is the expectation taken over all years. Estimations of the second
moments of the intermonth differences in climate variable x provide three
equations relating the six variables in equation (3)

E
[
(xy1 − xy2)

2
]
≈ 1

Y

Y∑
y=1

(xy1 − xy2)
2 ≡ a . (4)

But, equation (1) implies that

E
[
(xy1 − xy2)

2
]

= E
[
(εy1 − εy2)

2
]

= σ21 − 2σ1σ2φ12 + σ22 = a . (5)

In a similar manner, it follows that

σ1σ2φ12 − σ1σ3φ13 − σ22 + σ2σ3φ23 = b , (6)

σ22 − 2σ2σ3φ23 + σ23 = c , (7)
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where

b ≡ 1

Y

Y∑
y=1

(xy1 − xy2) (xy2 − xy3) , (8)

c ≡ 1

Y

Y∑
y=1

(xy2 − xy3)
2
. (9)

Earlier studies using this approach assumed that the monthly statistics of
the climate variable are stationary and the underlying daily time series is
an ar1 process [2, 9]. This provided an additional three equations σ1 =

σ2 = σ3 , φ12 = φ23 and φ13 = 0 , and allowed V(εy◦) to be estimated from
equation (3). However, these assumptions do not hold for precipitation which
consists of dichotomous (on/off) events. In the next section we show how
the three intermonth correlations φ12, φ23 and φ13 are estimated to provide
another three equations.

2.2 Estimating intermonth correlations

Here, we use a stochastic, two state, first order, Markov chain model [7] fitted
to daily precipitation data to estimate the intermonth correlation between
monthly means of the precipitation during a season.

Let {Jm,t | t = 1, . . . , Tm} denote the sequence of daily precipitation oc-
currences in month m with Tm days such that Jm,t = 1 indicates a ‘wet day’,
defined here as a day with at least 1mm of rain, and Jm,t = 0 a ‘dry day’. A
first-order Markov chain model is completely characterized by the transition
probability

Pm,jk = Pr(Jm,(t+1) = k | Jm,t = j) , (10)

where j, k = 0, 1 . The transition probabilities are estimated for each month
using daily data over all years, and hence we construct a one step transition



2 Methodology C589

Figure 2: Intermonth correlation φ̂13 for all months 1951–2000.
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matrix Pm for month m

Pm =

(
Pm,00 Pm,01
Pm,10 Pm,11

)
=

(
1− pm pm
αm 1− αm

)
. (11)

Then, the t-step transition probability is simply P
(t)
m = P

(t−1)
m Pm , and

Feller [1] showed that

P(t)
m =

1

αm + pm

(
αm pm
αm pm

)
+

(1− αm − pm)
t

αm + pm

(
pm −pm

−αm αm

)
. (12)

Suppose now that {Rm,t | t = 1, . . . , Tm} is the time series of daily pre-
cipitation amounts in month m, and the ‘intensity’ of rainfall on wet days
(Rm,t > 0 or Jm,t = 1) are taken to be conditionally independent and iden-
tically distributed with respect to time t [4]. Then, for any wet day in
month m, the first and second moments of the intensity are estimated from
daily data as

ηm ≡ E[Rm,t | Jm,t = 1] , (13)

νm ≡ E[R2m,t | Jm,t = 1] . (14)

Using these estimates for Pm,jk, ηm and νm, it is possible to estimate the
stationary probability of rainfall πm [7], the expected rainfall amount and
the expected second moment on any day in month m respectively, by

πm ≡ Pr(Jm,t = 1) =
Pm,01

(1− Pm,11 + Pm,01)
=

pm

αm + pm
, (15)

E[Rm,t] = E[Rm,t | Jm,t = 1] Pr(Jm,t = 1) = ηmπm , (16)

E[R2m,t] = E[R2m,t | Jm,t = 1] Pr(Jm,t = 1) = νmπm . (17)

By definition, the intermonth correlation between the monthly mean rain-
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fall in month m, that is 1
Tm

∑Tm

t=1 Rm,t , and n, that is 1
Tn

∑Tn

τ=1 Rn,τ , is

φmn ≡
E
[(

1
Tm

∑Tm

t=1 (Rm,t − E [Rm,t])
)(

1
Tn

∑Tn

τ=1 (Rn,τ − E [Rn,τ])
)]

√
E

[(
1
Tm

∑Tm

t=1 Rm,t − E [Rm,t]
)2]

E

[(
1
Tn

∑Tn

τ=1 Rn,τ − E [Rn,τ]
)2] .

(18)
In order to estimate equation (18), we need first to estimate E[Rm,tRn,τ] by

E[Rm,tRn,τ] = E[Rn,τ, Jn,τ = 1 | Jm,t = 1]E[Rm,t | Jm,t = 1] Pr(Jm,t = 1)

= ηmπm Pr(Jn,τ = 1 | Jm,t = 1)ηn , (19)

where, using the [2, 2] element of the t-step transition matrices in each month

Pr(Jn,τ = 1 | Jm,t = 1) =


P

(τ−t)
m [2, 2] , m = n = 1, 2, 3; τ > t ,

P
(Tm−t)
m P

(τ)
n [2, 2] , n = m+ 1 ,

P
(T1−t)
1 P

(T2)
2 P

(τ)
3 [2, 2] , m = 1, n = 3 .

(20)
Hence, the numerator in equation (18) is

E

[(
1

Tm

Tm∑
t=1

(Rm,t − E [Rm,t])

)(
1

Tn

Tn∑
τ=1

(Rn,τ − E [Rn,τ])

)]

=
1

TmTn

Tm∑
t=1

Tn∑
τ=1

E[Rm,tRn,τ] −

(
1

Tm

Tm∑
t=1

E [Rm,t]

)(
1

Tn

Tn∑
τ=1

E [Rn,τ]

)

= ηmηn

{
πm

TmTn

Tm∑
t=1

Tn∑
τ=1

Pr(Jn,τ = 1 | Jm,t = 1) − πmπn

}
. (21)

Similarly, the two terms in the denominator are

E

( 1

Tm

Tm∑
t=1

(Rm,t − E [Rm,t])

)2
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=
2η2mπm

T 2m

Tm−1∑
t=1

Tm∑
τ=t+1

Pr(Jm,τ = 1 | Jm,t = 1) +
πmνm

Tm
− π2mη

2
m . (22)

Using equations (21), (22) in equation (18), we estimate φ12, φ23 and φ13 and
use these as our estimates of the intermonth correlations for the intraseasonal
component of the precipitation. With these estimates, equations (5), (6)
and (7) are solved numerically for σ1, σ2 and σ3.

2.3 Potential predictability

The total interannual variability of the seasonal mean of a climate variable
is estimated by the sample variance

V̂(xy◦) =
1

Y − 1

Y∑
y=1

[xy◦ − x◦◦]
2
, (23)

where the caret ‘^’ denotes an estimate. A commonly used definition of po-
tential predictability [2, 9, e.g.] is the fraction of total interannual variability
of the seasonal mean that is not due to the intraseasonal variance

Potential Predictability ≡ 1−
V̂(εy◦)

V̂(xy◦)
, (24)

which is calculated using equations (3) and (23).

3 Potential predictability of West

Australian rainfall

Here, we illustrate the methodology by using it to estimate the potential pre-
dictability of West Australian (wa) rainfall using monthly mean and daily
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data for the period November 1950 to December 2000, taken from the Aus-
tralian Bureau of Meteorology National Climate Centre gridded historical
dataset [3]. The data have been interpolated from the original 0.25◦ × 0.25◦
latitude/longitude grid to a 1◦×1◦ grid. The daily data was used to estimate
φ12, φ23 and φ13.

Figures 1 and 2 show the estimated φ̂12 and φ̂13, respectively, for each
calendar month. Both figures show a very distinct annual cycle with largest
correlations over the north during the summer and autumn months. During
these months, φ̂12 and φ̂13 can both have values as large as 0.1. This contrasts
with the case for a climate variable (for example, surface temperature, or
the geopotential height) that is modelled as an ar1 process, for which the
constraints 0 ≤ φ12 ≤ 0.1 and φ13 = 0 apply [9]. This further illustrates why
these ar1 assumptions are not applied to precipitation. For the remaining
months, the magnitudes of φ̂12 and φ̂13 rarely exceed 0.02. Over southern
wa, the magnitudes of both correlations rarely exceed 0.02 in all months.

Figure 3 shows the estimated potential predictability of wa precipitation
for each three month season, denoted here by the first letter of each month
(for example December–January–February is djf). Again, there is a distinct
annual cycle in the pattern of potential predictability. From ndj to amj, the
potential predictability is very low north of 20◦S, indicating that intrasea-
sonal processes dominate. South of 20◦S, during these seasons, the potential
predictability ranges between 20% to 70%, except for the far southwest of
the state, where the potential predictability is generally much less than 20%.
For the remaining seasons mjj to ond, there is quite substantial potential
predictability over the north and central regions of the state, especially near
the eastern border of the state. Potential predictability over the southwest
of the state, where most of the population and agriculture is located, is still
very low, except during aso and son. This indicates that chaotic weather
phenomena is mainly responsible for the seasonal rainfall in this area.
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Figure 3: Potential predictability of Western Australian rainfall 1951–2000
in all three month seasons expressed as a percentage.
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4 Conclusions

We have outlined a procedure for estimating the potential predictability of
seasonal mean climate data where the underlying daily processes are char-
acterized as dichotomous events, as is the case with precipitation. The
proposed methodology is an extension of a recently proposed method suit-
able for monthly climate variables that are approximated by ar1 ‘red noise’
processes [2, 9]. The generalised formalism expressed by equations (5), (6)
and (7) encompasses this earlier method.

In the more general case, estimates of the intermonth correlations allow
a solution for the monthly variances and consequently the component of the
total variance that is due to intraseasonal processes, and finally an estimate of
the potential predictability. For rainfall events, a stochastic two state, first
order, Markov chain model fitted to daily precipitation data allows these
correlations to be estimated.

Using this methodology, we constructed maps of potential predictability
for wa rainfall in all possible three month seasons. The potential predictabil-
ity shows a distinct annual cycle with generally

1. high potential predictability over the north and centre of the state
during mjj to ond, especially on the eastern border,

2. high potential predictability in the southeast of the state during djf
to fma, and

3. very little potential predictability in the southwest of the state except
during aso and son when there is moderate potential predictability.
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