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A method of lines approach for modelling
saltwater intrusion in coastal aquifers
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Abstract

The equations governing saltwater intrusion in coastal aquifers are
complex. Backward Euler time stepping approaches are often used
to advance the solution to these equations in time, which typically
requires that small time steps be taken in order to ensure that an
accurate solution is obtained. We show that a method of lines ap-
proach incorporating variable order backward differentiation formulas
can greatly improve the efficiency of the time stepping process.
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1 Introduction

Groundwater aquifer systems have for a long time been used to provide fresh
water for irrigation and other purposes in many parts of the world. Care-
ful management of these valuable resources is essential to ensure that they
are not overused. In the case of coastal aquifers, an additional and impor-
tant complication is the potential for saltwater intrusion if the aquifers are
stretched beyond their long term yield [1].

In an attempt to better understand and ultimately predict future be-
haviours of these aquifer systems, mathematical models have been developed
to describe the process of saltwater intrusion [4, 6, 7, 9]. The mechanisms
governing this process are complex, involving variable density fluid flow in
anisotropic, heterogeneous porous media.

Obtaining accurate solutions to these equations can be costly in terms
of computational work required. In their investigation of Richards’ equation
in one spatial dimension, Tocci et al. found that a method of lines approach
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incorporating variable order, backward differentiation formulas substantially
reduced the overall cost of solution compared to traditional backward Euler
time stepping approaches [8]. We demonstrate that a similar approach, based
on a finite volume spatial discretisation, is effective at solving the coupled,
nonlinear system of pdes that arises in the modelling of saltwater intrusion
in groundwater aquifer systems.

2 Mathematical model

The primary variables in the model are reference hydraulic head and salt
concentration, denoted by h and C respectively. The fluid density ρ depends
on concentration, and is modelled using

ρ = ρ0(1+ ηC),

where η = ε/Cs is the density coupling coefficient, ε = (ρs − ρ0)/ρ0 is the
density difference ratio, Cs is the salt concentration of seawater and ρ0 and ρs

are the densities of freshwater and seawater respectively.

The average fluid velocity, v, is given by Darcy’s law [6]

v = −
kρ0g

φµ
(∇h+ ηC∇z) ,

where k is the permeability tensor, g is the gravitational acceleration, φ is
the porosity and µ is the dynamic viscosity.

The specific storage of the aquifer is Ss = ρg [(1− φ)α+ φβ], where α is
the porous matrix compressibility and β is the fluid compressibility. The
pumping rate per unit volume of the aquifer is denoted by q.

The dispersion tensor D takes the following form [2]

D = (αL − αT )
vvT

‖v‖
+ (αT‖v‖+Dm)I ,
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where Dm is the molecular diffusivity and αL and αT are the longitudinal
and transverse dispersivities respectively.

With the above relations in place, the following two partial differential
equations model the saltwater intrusion problem [6]

ρ0Ss
∂h

∂t
+ φρ0η

∂C

∂t
+ ∇ · (φρv) = ρq , (1)

φ
∂C

∂t
+ ∇ · (φCv) = ∇ · (φD∇C) + Cq . (2)

Equation (1) describes the flow of a variable density fluid, while (2) describes
the transport of dissolved salt. Initial and boundary conditions for these
equations are discussed in Section 4.

3 Numerical solution

3.1 Spatial discretisation

Following Liu et al. [7], we discretise in space using a vertex centred finite
volume method over a rectangular mesh. Around each node is constructed a
rectangular control volume, such that no two control volumes intersect, and
their union is the entire domain.

Integrating (1) and (2) over a control volume Vi, we obtain∫
Vi

ρ0Ss
∂h

∂t
dV +

∫
Vi

φρ0η
∂C

∂t
dV +

∫
Vi

∇ · (φρv)dV =

∫
Vi

ρqdV , (3)∫
Vi

φ
∂C

∂t
dV +

∫
Vi

∇ · (φCv)dV =

∫
Vi

∇ · (φD∇C)dV +

∫
Vi

CqdV . (4)
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For flux terms we apply the divergence theorem, while for all other terms we
introduce control volume averaged quantities, denoted with an overline

ρ0

(
Ss
∂h

∂t

)
i

∆Vi + φρ0η

(
∂C

∂t

)
i

∆Vi +

∫∫
∂Vi

(φρv) · n̂dσ = (ρq)i∆Vi, (5)

φ

(
∂C

∂t

)
i

∆Vi +

∫∫
∂Vi

(φCv) · n̂dσ =

∫∫
∂Vi

(φD∇C) · n̂dσ+
(
Cq

)
i
∆Vi .

(6)

Equations (5) and (6) are exact restatements of (1) and (2) in control volume
form. The approximation comes when control volume averaged quantities are
replaced by their values at the corresponding node, to obtain

ρ0(Ss)i
dhi

dt
+ φρ0η

dCi

dt
=

1

∆Vi

∫∫
∂Vi

(−φρv) · n̂dσ+ (ρq)i , (7)

φ
dCi

dt
=

1

∆Vi

∫∫
∂Vi

(−φCv + φD∇C) · n̂dσ+ (Cq)i . (8)

This approximation is second order in space provided the nodes coincide with
the control volume centroids. To approximate the surface integrals, we use a
midpoint quadrature rule, along with standard bilinear finite element shape
functions to evaluate the fluxes at the control volume faces. This approach
is sometimes known as the control volume, finite element method (or cv-
fem). Upstream weighting handles the advection terms, as was done by Liu
et al. [7].

To facilitate parallelism in the code, the mesh is partitioned into non-
overlapping subdomains, and each is assigned to a separate mpi process.
One layer of neighbouring node (or ‘ghost node’) information is required to
evaluate the fluxes in (7) and (8); the subdomains are otherwise independent.
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3.2 Temporal discretisation

To advance the solution in time we use the backward differentiation for-
mulas (bdfs) provided by the Suite of Nonlinear and Differential/Algebraic
Equation Solvers (sundials) [5], and in particular the Implicit Differential/
Algebraic (ida) solver therein. This solver uses variable order, variable coef-
ficient bdfs in fixed-leading-coefficient form [3]

p∑
i=0

αn,iy
(n−i) = δtnẏ

(n) , (9)

where y(n) and ẏ(n) are the computed values of the dependent variable and
its derivative at time step n, δtn is the time step size and p is the order
of the method (up to a maximum order of five). In an attempt to achieve
optimal efficiency of the method, ida dynamically adjusts both δtn and p at
each iteration by analysing local truncation error estimates [5].

Applying (9) to (7) and (8), where

yi =

{
hi , i odd,

Ci , i even,

generates a nonlinear algebraic system that must be solved at each time step.
The ida package provides a choice of Jacobian-free Newton–Krylov nonlinear
solvers for this purpose. The termination criterion for the nonlinear iterations
is based on ensuring

R

1− R
‖δy‖ < σ , (10)

where R is an estimate of the linear convergence rate and δy is the difference
between successive iterates [5].

For the tolerance σ, ida uses a default value of σ = 0.33 . However,
Tocci et al. [8] found that σ = 0.033 was a more appropriate value when
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solving Richards’ equation. Our findings agree, with σ = 0.033 found to
be more efficient, in terms of the number of time steps required to compute
solutions, than either σ = 0.33 or σ = 0.0033 (see Section 4.2). Hence, we
take σ = 0.033 .

Gmres is used for the underlying linear solver. Preconditioning is han-
dled by the parallel band-block-diagonal preconditioner provided by ida,
which computes local, banded lu factorisations on each mesh subdomain
(ignoring any ghost node contributions), thereby generating a block diago-
nal, inexact lu factorisation overall [5].

4 Results

We consider a test problem, and an application to the Bundaberg region
of Queensland. Parameter values consistent across both problems are Cs =

1.0 (non-dimensionalised), g = 9.81m s−2, α = 1.0 × 10−8 m s2 kg−1, β =

4.47 × 10−10 m s2 kg−1, ρ0 = 1000 kg m−3, ρs = 1025 kg m−3, µ = 1.0 ×
10−3 kg m−1 s−1 and q = 0 s−1. Initial conditions are of hydrostatic head and
fresh water.

4.1 Test problem

The test problem is one of seawater intrusion in a phreatic aquifer receiving
recharge, taken from Huyakorn et al. [6], and illustrated schematically in
Figure 1. Additional parameter values for this problem are φ = 0.25 , Dm =

0.0m2 s−1, αL = 10.0m, αT = 5.0m, Utop = 2.31 × 10−8 m s−1, Uright =

4.63 × 10−8 m s−1 and k = diag(4.72, 4.72, 0.472) × 10−12 m2. The steady
state 0.5 isochlor is shown in Figure 2, which agrees well with the results
published by Cheng et al. [4, Figure 6].
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Figure 1: Test problem schematic.

Figure 2: Steady state solution for test problem with 0.5 isochlor shown.



4 Results C633

0 500 1000
10

−10

10
−5

10
0

10
5

timesteps

st
ep

 s
iz

e

 

 

variable order BDFs
backward Euler

0 100 200
10

−10

10
−5

10
0

10
5

timesteps

st
ep

 s
iz

e

 

 

step size
1

2

3

4

5

or
de

r

 

 

order

(a) (b)

Figure 3: Step size versus number of time steps for test problem: (a) vari-
able order bdfs and the backward Euler method; (b) variable order bdfs
and their associated order.

Figure 3(a) compares the size of the time steps taken when using variable
order bdfs, to those taken when using the backward Euler method (obtained
by setting the maximum allowable order to be one in ida). Using variable
order bdfs leads to a significant reduction in the number of time steps re-
quired to advance the solution to its steady state. This was also reflected
in the number of function evaluations required in the solution of the associ-
ated nonlinear algebraic system, with variable ordering bdfs requiring just
524 evaluations, compared to the 2080 evaluations required by the backward
Euler method.

Figure 3(b) shows the order of the bdfs that were used at each step in the
variable order case. The figure confirms that bdfs as high as fifth order are
being utilised for the majority of the early time steps, while at later times the
method settles for either third or fourth order, apparently unable to choose
decisively between the two.
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Figure 4: Permeabilities for the Bundaberg problem.

4.2 Bundaberg problem

For the second problem, we consider a cross section of the coastal allu-
vial aquifer system in the Bundaberg region of Queensland. This hetero-
geneous, anisotropic aquifer system comprises two aquifers separated by a
leaky aquitard [1]. The mesh geometry, along with the permeabilities in the
horizontal direction, are illustrated in Figure 4. Permeabilities in the vertical
direction are estimated to be 1000 times less than in the horizontal [1].

The system receives recharge from rainfall along the top, at rates of 60mm
per year for the first 4.5 km and 90mm per year for the next 9.6 km [1]. We
follow Zhang et al. [9] and impose equivalent freshwater heads and constant
salt concentration for the remaining distance across the top, and along the
seaward (right) boundary. The inland (left) and lower boundaries are treated
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as no-flow, being formed by relatively impermeable bedrock [1]. Remaining
parameter values for this problem are φ = 0.34 , Dm = 3.0 × 10−9 m2 s−1,
αL = 100.0m and αT = 20.0m.

Although there is substantial groundwater extraction from this aquifer
system, the problem must first be solved assuming no extraction in order to
determine the initial condition for the full simulation [1]. It is this problem
that we analyse here. Two solutions are shown in Figure 5: the solution
after 100 years; and the steady state solution (which is after several thousand
years). Both are in good agreement with the results published by Zhang et
al. [9, Figures 8 and 10].

Figure 6(a) compares the size of the time steps taken to step to 100 years
when using variable order bdfs, against those taken when using the backward
Euler method. Once again the improved efficiency offered by the variable
order scheme is apparent, with fewer than a third of the number of steps
required compared to the backward Euler method.

Figure 6(b) confirms the effectiveness of using σ = 0.033 in (10), with
this choice leading to faster, and less erratic progress towards 100 years, than
either σ = 0.33 or σ = 0.0033 .

5 Conclusion

The accurate simulation of saltwater intrusion in coastal aquifer systems is
a difficult task. We used a method of lines approach incorporating a con-
trol volume, finite element, spatial discretisation, combined with variable
order backward differentiation formulas, using the ida package. With this
approach, we demonstrated how the use of variable order bdfs leads to sig-
nificantly improved efficiency in the time stepping process compared to tra-
ditional backward Euler approaches. This improved efficiency comes from
the ability to use larger time steps while still maintaining accuracy in the
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Figure 5: Solution to the Bundaberg problem at 100 years (top); steady
state (bottom).
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Figure 6: Step size versus number of time steps for Bundaberg problem:
(a) variable order bdfs and the backward Euler method; (b) the effect of σ
on variable order bdfs.

computed solution, hence resulting in a greatly reduced number of time steps
required to reach the final solution time.
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