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Estimating the potential predictability of
Western Australian surface temperature using
monthly data
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Abstract

The seasonal mean of a climate variable is considered to be a statis-
tical random variable with two components: a slow component related
to slowly varying (time scales of a season or more) forcings from exter-
nal and internal atmospheric sources, and an intraseasonal component
related to forcings from weather variability with time scales less than a
season. Here, an extension of a previous Analysis of Variance method
is proposed which deals with climate data in all seasons when esti-
mating the intraseasonal variability. By removing this from the total
variability, an estimate for the slow component, and hence the long
range predictability, of the seasonal mean is made. The method is
applied to monthly surface temperature data for Western Australia
from 1951-2000.
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1 Introduction

Climate variability has a major impact on the Australian economy, primarily
through its direct impact on agriculture. Climate variability is managed
through the provision of seasonal forecasts, the skill (or accuracy) of which
is able to be assessed (for example, Fawcett et al. [1]). This raises the issue
of where efforts and funds should be directed for better understanding the
large scale processes which the provision of skilful forecasts depend upon.
In particular, what are the regions and seasons where surface climate is
potentially predictable?

Central to this question, and to seasonal forecasting, is the concept that
the seasonal mean of a climate variable is considered to be a statistical ran-
dom variable consisting of signal and noise components [2]. The signal is
related to slowly varying (a season or more) boundary, or external, forcings
or internal atmospheric variability and is considered as the ‘slow’ component
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of interannual variability of the seasonal mean [7]. The noise is related to
internal atmospheric variability with time scales of about two weeks to a
season and has been termed the ‘intraseasonal’ component of variability [7].

Frederiksen and Zheng [2] reviewed methods to estimate the intrasea-
sonal variance. Recently, a method has been formulated to estimate the
intraseasonal variance from monthly mean observations [9]. However, while
the assumptions used are probably valid for summer and winter, this is not
necessarily the case in all seasons. Here, we apply less restrictive assump-
tions about the monthly statistics of climate anomalies, in order to extend
the analysis to include all seasons.

2 Methodology

2.1 Statistical model

Given the statistical model described above, the monthly mean anomaly of
a climate variable x is [2, 7, 9]

Xym = Hy + €ym, (1)

where m (m = 1,2,3) is the month index in the season, y (y = 1,...,Y)
is the year index and Y is the total number of years, p, is the seasonal
population mean, and €yy, is the monthly departure of xyny, from p,. It
is assumed that the vector (ey1, €y2, €y3) is a stationary and independent
random vector with respect to yeary [5]. Although p, and e, are not able to
be directly separated, it is possible to do so for their respective variances V [9]

V(Xyo) - V(eyo) + v(l‘l/y) + ZV(Hy, eyo) ) (2)

where a subscript ‘0’ represents the average over an index (m or y).
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Here, we denote the interannual variance of eym by
V(eym) = 0-1211» (3)
for each month m. The intermonthly correlations, C(eym, €yn), are then
defined as
V(eym, €
C(eymyeyn):M:(bmna m,n:1,2,3, m#“—) (4)
OmOn

where V(eym, €yn) denotes the covariance between the intraseasonal com-
ponents in months m and n. The interannual variance of the intraseasonal
component is then

1 ’
V(eyw) = E <§mz_]eym>

1
= § (G% + 0'% + O"% + 20'1(72(])12 + 2(720'3(])23 + 20‘10‘3(1)13) , (5)
where E denotes the expected value.

In order to estimate the terms on the right hand side of equation (5), we
consider the expectation value of the monthly differences of €ym:

.
E €y1 — €y2 Gy] — €yz _
€y2 — €y3 €y2 — €y3
2 2 2
07 —20102¢12 + 03 010212 — 0103¢13 — 05 + 0203023

2 2 2

0102¢12 — 0103¢13 — 05 + 020323 05 —20203¢23 + 03
(6)
From equation (1), differences in the monthly mean are assumed to be entirely
due to the intraseasonal component (for example, X1 — Xy2 = €y1 — €y2).

Hence the monthly moments of e are defined in terms of the monthly
moments of Xym:

Y
El(eyr —€y2)” = E (xy1 —xy2)° = Z Xy1 — Xy2) = a, (7)
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E (€y1 - eyZ) (eyZ - €y3) =E (Xy1 - Xyl) (XyZ - Xy3)

Z Xyl — Xy2) (X2 —xy3) = b, (8)

Y
E(Gyz— €y3)2 - E(XyZ_Xy3 ~ Z Xyz—Xyg E C. (9)

From equation (6), this leads to the following set of equations

— 20102012+ 05~ a, (10)
0102012 — 010313 — 05 + 0203023 ~ b, (11)
03— 20,03¢23 + 03~ C. (12)

2.2 Solution for Australian surface temperature

Equations (10), (11) and (12) represent three equations with six unknowns.
In order to use monthly mean data, it is necessary to make some assumptions
about the monthly statistics of the climate data. For Australian surface
temperature, it is assumed that the standard deviation of €, varies linearly
across a season by a parameter f3:

o1=0—p, o3=02+p, [Bl<o0:. (13)

It is also assumed that the intermonthly correlations of €y are stationary
within each season:

G12=bas. (14)
Grainger et al. [3] showed that the assumptions in equations (13) and (14)
to a first order account for the variability of Australian surface temperature
within a season. Recognising that day-to-day weather events are unpre-
dictable beyond a week or two, we further assume that the intraseasonal
components are uncorrelated if they are a month or more apart:

$13=0. (15)
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Since daily surface temperature is a first order autoregressive process, Zheng
et al. [8] showed that the estimation error is reduced by applying the con-
straint

0< 12 <0.1. (16)

Applying equations (13), (14) and (15) to equations (10), (11) and (12)
leads to the following set of three equations with three unknowns:

(02— B)*—202(02—B)p12+ 03~ a, (17)
05(2p1,—1) =~ b, (18)
(024 B)*—202(024 B)p12+ 03~ C. (19)

Equations (17), (18) and (19) are solved by rearranging to form a cubic equa-
tion for ¢12. The real root of the solution is then constrained by equation (16)
before back-substitution into equations (17) and (19) to find 3 and o,. The
intraseasonal variance is then estimated as

Vleyo) = 5 [63(3 -+ 41 + 287, (20)

where the caret “” denotes an estimate.

2.3 Potential predictability

The total interannual variability of the seasonal mean of a climate variable
is estimated by the sample variance
1Y
V(Xyo) — ﬁ [Xyo - X00]2 . (21)
y=1
A commonly used definition of potential predictability (for example, Fred-
eriksen and Zheng [2], Zheng et al. [9]) is the fraction of total interannual
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variability of the seasonal mean that is not due to the intraseasonal variance,

V(eyo)
Vixyo) '

Potential Predictability = 1 —

(22)

which is calculated using equations (20) and (21).

3 Potential predictability of Western
Australian surface temperature

To illustrate the methodology, the potential predictability of surface tem-
perature for Western Australia is estimated using equation (22). Monthly
mean surface maximum and minimum temperature were obtained from the
Australian Bureau of Meteorology National Climate Centre gridded histor-
ical dataset [4]. Surface maximum and minimum temperature were chosen
for analysis since they are direct observations from the network of Australian
weather stations. Data was obtained for period November 1950 to December
2000 on a grid of 1° x 1° latitude/longitude land surface points.

The estimated potential predictability of Western Australian surface max-
imum temperature for all 12 three month ‘seasons’ is shown in Figure 1 as
a percentage. Each season is denoted by the first letter of each month (for
example, December—January—February is DJF). North of 20°S, there is gener-
ally high potential predictability (at least 50%) throughout most of the year.
However, in other regions, there is a more pronounced seasonal cycle. For
example, potential predictability along the west coast goes from a maximum
(over 60%) in JJA to a minimum (less than 20%) in DJF.

Figure 2 shows the estimated potential predictability of Western Aus-
tralian surface minimum temperature. Like surface maximum temperature,
the potential predictability is generally high north of 20°S, although it is
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FI1GURE 1: Estimated potential predictability for Western Australian surface
maximum temperature for the period 1951-2000, shown as a percentage.
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FIGURE 2: Estimated potential predictability for Western Australian surface
minimum temperature for the period 1951-2000, shown as a percentage.
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much lower in OND. Elsewhere, seasonal cycles can be seen, but the struc-
ture and season of these cycles differ from surface maximum temperature.
For example, along the south coast potential predictability goes from less
than 20% in JJA to over 70% in OND. The different seasonal cycles are likely
to be due to differences in the processes involved with daily surface maxi-
mum and minimum temperature, which have been considered in terms of the
diurnal cycle of the surface energy budget [6].

4 Conclusions

An existing Analysis of Variance method has been extended to estimate the
intraseasonal variance of the seasonal mean of a climate variable in all sea-
sons. By making assumptions about the monthly statistics that are valid
for Australian surface temperature, the intraseasonal variance, and therefore
the potential predictability, is estimated from monthly mean data for all sea-
sons. The new methodology was applied to surface maximum and minimum
temperature for Western Australia for the period 1951-2000. The potential
predictability shows distinct cycles over the 12 three month seasons. These
cycles are different for surface maximum and minimum temperature, which is
likely to be due to differences in the physical processes involved for the daily
temperature. In general, the potential predictability for surface minimum
temperature is somewhat higher than for surface maximum temperature.
The sources of potential predictability will be examined in future by extend-
ing to all seasons the current methodology for estimating the intraseasonal
covariance of two climate variables [7].
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