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Approximating the solution of the chemical
master equation by aggregation
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Abstract

The chemical master equation is a continuous time discrete space
Markov model of chemical reactions. The chemical master equation
is derived mathematically and it is shown that the corresponding ini-
tial value problem has a unique solution. Conditions are given under
which this solution is a probability distribution. We present finite
state and aggregation-disaggregation approximations and provide er-
ror bounds for the case of piecewise constant disaggregation. The
aggregation-disaggregation approximation allows the solution of the
chemical master equation for larger state spaces and is also an impor-
tant tool for the solution of multidimensional problems.
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1 The chemical master equation

We consider a simple stochastic model for a closed system of s chemical
species (molecules, chemical complexes, parts of molecules, etc) which may
react according to a given set of reactions. The state of the system is de-
scribed by the copy numbers of each species and is an integer vector x ∈ Ns.
A chemical reaction is then modeled as a state transition

x→ x+ z

where z ∈ Zs is the stoichiometric vector of the reaction. We assume that
the system is well stirred and in constant (random) motion and that as a
consequence reactions occur randomly and the state of a system is a stochas-
tic process, that is, a time dependent random variable. If one assumes that
the propensity of any one reaction to take place only depends on the cur-
rent state of the system one gets a Markovian model. Admittedly, this is
a very simple model of chemical processes as they occur inside biological
cells. Nonetheless, such models have been successfully used to gain insight
into many cellular processes [1, 10, e.g.]. Moreover, a further justification
for this model is that the widely used kinetic rate equations are obtained
as a limiting case when the copy numbers tend to infinity. However, it has
been shown that the stochastic model cannot be replaced by the kinetic rate
equations—even if one is only interested in expectations of X(t)—and con-
sequently the ‘intrinsic noise’ of chemical reactions is an important driver in
molecular biology.

Currently, the main computational tool to study the behaviour of stochas-
tic chemical reactions is the stochastic simulation algorithm (ssa) introduced
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by Gillespie in 1977 [5]. This algorithm uses a random number generator to
generate sample paths of the reaction. For complex systems with large num-
bers of reactions and systems with fast reactions the ssa was found to be
too slow as the ssa updates the sample path for every single reaction taking
place. An improvement is obtained with the tau-leap method which updates
the sample path over larger time intervals [5] using an approximation which
models the chemical reactions by independent Poisson processes. The time
intervals are also determined as part of the procedure.

In many applications one is interested in statistical information about
the stochastic process like the expectations, moments, correlations, quantiles
and statistics of arrival times. Such information can be obtained from sam-
ple paths but one typically needs to average over a large number of them to
get sufficient accuracy. One uses the sample paths x(i)(t) to get an empiri-
cal distribution function for the random variables X(t) and determines the
statistics from the empirical distribution function which takes the form

pemp(x, t) =
1

N

N∑
k=1

δ(x− x(k)(t))

where δ(0) = 1 and δ(x) = 0 for x 6= 0 .

The large computational effort required to generate large numbers of sam-
ple paths required motivates the search for alternative approximations of the
probability distribution p(x, t) of X(t). Such approximations may be based
on the chemical master equation which is an (infinite) system of ordinary
differential equations describing the dynamics of p(x, t). In terms of proba-
bilities, the chemical reaction i with a stoichiometric vector zi increases the
probability of state x + zi by some amount and decreases the probability of
state x by the same amount. Chemical reactions thus define fluxes of proba-
bilities ji and one gets the following differential equations for a system with
r reactions [4]:

∂p(x, t)

∂t
=

r∑
i=1

(Szi − I)ji(x, t). (1)
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Here I is the identity, Szi is the shift operator defined by

Szip(x, t) = p(x+ zi, t),

and zi is the stoichiometric vector of reaction i. The choice of the flux should
be such that p(x, t) is a probability distribution with∑

x∈Ns

p(x, t) = 1.

In order for this conservation of total probability to apply, no probability
should flow out of the domain,

ji(x, t) = 0 if x+ zi 6∈ Ns. (2)

By definition one also has ji(x, t) ≥ 0 for all x and t. The chemical inter-
pretation of this condition is that reactions will not occur unless sufficient
amounts of the substrates are available. The second defining property of
probabilities is that they cannot be less than zero. For this property to be
maintained there can be no fluxes away from points x with p(x, t) = 0 as
such fluxes would lead to negative probabilities. It follows then that there
must exist finite functions λi(x, t) (which in principle could depend on p)
such that

ji(x, t) = λi(x, t)p(x, t) (3)

and by the previous condition one has

λi(x, t) = 0 if x+ zi 6∈ Ns.

In summary, one has the following simple result

Lemma 1 Let p(x, t) be such that p(x, 0) is a probability distribution and
furthermore satisfies

∂p(x, t)

∂t
=

r∑
i=1

(Szi − I)λi(x, t)p(x, t)
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where λi ≥ 0 satisfy

λi(x, t) = 0 if x+ zi 6∈ Ns,

then p(x, t) is a probability distribution.

The system of differential equations satisfied by p(x, t) are called the chemical
master equations [11]. One introduces the multiplication operators Λi by

Λip(x, t) = λi(x, t)p(x, t) ,

the linear operator A by

A =

r∑
i=1

(Szi − I)Λi (4)

and writes the chemical master equations (cme) as

∂p

∂t
= Ap. (5)

In this general form the Hille–Yosida theorem guarantees existence and
uniqueness of the solution of the cme:

Theorem 2 Let A =
∑r
i=1(Si− I)Λi where Si are shift operators and where

Λi ≥ 0 are densely defined diagonal operators on `1(Nd). Then the initial
value problem

dp

dt
= Ap

with p(0) = p0 ∈ `1(Nd) has a unique continuous solution p(t) ∈ `1(Nd).
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Proof: For any λ > 0 and f ∈ `1(Nd) in the domain of A one has

‖(λI−A)f‖ = ‖λf+

r∑
i=1

Λif−

t∑
i=1

SiΛif‖

≥ ‖λf+

r∑
i=1

Λif‖−

r∑
i=1

‖Λif‖

=
∑
x∈Nd

[
λ+

r∑
i=1

λi(x)

]
|f(x)| −

∑
x∈Nd

r∑
i=1

λi(x)|f(x)|

= λ‖f‖

by the definition of the `1 norm and as ‖Si‖ ≤ 1 . As A is densely defined
in `1(Nd) it follows that the residual (λI−A)−1 is a bounded linear operator
on `1(Nd) and that

‖(λI−A)−1‖ ≤ 1
λ
.

By the Hille–Yosida theorem, A is the infinitesimal generator of a strongly
continuous semigroup Tt and consequently, p(t) = Ttp0 is the unique contin-
uous solution of the cme. ♠

Some simple relevant biochemical examples with one reaction include the
Poisson process with λ(x) = αx , the decay with λ(x) = α(a − x)+ , the
(hetero and homo) dimerization with λ(x) = α(a − x)+(b − x)+ and the
reduced Michaelis–Menten process with λ(x) = α(a − x)+/(b + a − x)+

where α, a, b are all larger than zero and where (a−x)+ = max(a−x, 0) etc.
Except for the first case, all the cases result in an effectively finite state space.
However, this is usually not the case of reversible reactions and more than
one species. Systems with multiple reactions are obtained as combinations
of these simple reactions. Interactions between species are obtained as the
rates λi related to the production or decay of one species may depend on the
levels of other species and, in addition, multiple species may be produced or
consumed in the same reaction.
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Currently there seem to be three major computational approaches to
solve the cme which were all developed at about the same time. The dis-
crete Galerkin [3, 2] method uses a the Rothe approach by first discretizing
time and then solving the resulting system of equations approximately. This
approximation is based on a space partitioning and uses a local spectral basis
in each partition. The finite state projection ( fsp) method [8] is based on
a truncation of the state space combined with an interpolation using piece-
wise polynomials on the space partitions. The aggregation approach [6] uses
a finite volume method and local polynomial approximation for state space
approximation and the expokit method [9] for the solution of the resulting
ode. This method has been extended by an adaptive sparse grid approxi-
mation in order to solve large systems. It was shown to be able to solve the
cme with up to 100 species [7].

While all the methods are based on local polynomial approximations it
was so far unclear why such polynomial approximations should perform well
for approximating the probability distribution which does not have the usual
smoothness properties required for such approximations as it is an integer
function. In the next section we answer this question by providing approxi-
mation error bounds for a class of functions which contains the probability
distributions of interest.

2 Approximation of probabilities over N

The main tool for the analysis will be the characteristic function or Fourier
transform of the probability distributions defined as

p̂(ω, t) =
∑
x∈N

p(x, t)eixω.

As p ∈ `1 (as a function of x) the characteristic function is a continuous
2π-periodic function of ω. In case of the Poisson process one has rates
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λ(x) = constant and

p(x, t) =
(λt)x

x!
exp(−λt), x ∈ N ,

and
p̂(ω, t) = exp

[
λt(eiω − 1)

]
.

The special form of p for this and similar cases motivated Engblom [3] and
Deuflhard [2] to consider weighted `2 norms with weights of the form

w(x) =
x!

αx
, x ∈ N ,

for some α > 0 . Similarly, we suggest to consider a weighted supremum norm
with slightly weaker weights but include a weighted norm on the Fourier
space. Specifically, let α > 0 , β > 0 and κ ≥ 0 be constants and define

‖a‖α,β,κ = sup
x∈N

eα|x−κ||a(x)| + sup
ω∈[−π,π]

eβ|ω||â(ω)|.

This defines a norm on the set of finite length sequences a (sequences where
only a finite number of terms are nonzero) and the topological closure is then
a Banach space defined as

Mα,β,κ = {a | ‖a‖α,β,κ <∞}.

It follows that for every a ∈Mα,β,κ one has

|a(x)| ≤ e−α|x−jκ|‖a‖α,β,κ, k ∈ Z ,

and
|â(ω)| ≤ e−β|ω|‖a‖α,β,κ, ω ∈ [−π, π].

This means that for large enough β and α the p ∈ Mα,β admit sparse
approximations both in the original and in the Fourier domain. For example,
one has for the number of terms larger than some ε ∈ (0, ‖p‖α,β,κ]:

#{p(x) > ε} ≤ 2

α
log
‖p‖α,β
ε

.
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(For simplicity we treat time t as an implicit parameter and write p(x)
instead of p(x, t).) In passing we note that a consequence of the bound
on p̂(ω) and because we have p̂(0) = 1 (as p is a probability) one has

‖p‖α,β,κ ≥ 1.

We consider a combination of two approximations. First we truncate the
state space and set the approximation p(m,n) to be defined by

p(m,n)(x) :=

{
p(x), x = m, . . . ,m+ n− 1

0 otherwise.

This approximation has n consecutive (potentially) nonzero terms. The best
possible approximation with n consecutive nonzero terms Tn(p) = p(mbest,n)

then satisfies
‖Tn(p) − p‖1 ≤ ‖p(m,n) − p‖1, m ∈ N .

This approximation is a nonlinear approximation. One has the error bound

Proposition 3 For p ∈ Mα,β,κ the error of the ‘best consecutive n-term
approximation’ Tn is bounded by

‖Tn(p) − p‖1 ≤ Ce−αn/2

for C = 2‖p‖α,β,κ/(1− e−α).

Note that approximation procedure does not require the knowledge of any of
the parameters α, β nor κ.

Proof: We show that there exists an approximation p(m,n) with this bound.
First observe that for the n-term approximation starting at m one has

‖p(m,n) − p‖1 =

m−1∑
x=0

p(x) +

∞∑
x=m+n

p(x),
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and so, as p(x) ≤ ‖p‖α,β,κe−α|k−κ| one has, form satisfying κ−n+1 ≤ m ≤ κ ,

‖p(m,n) − p‖1 ≤

(
m−1∑
x=0

e−α(κ−k) +

∞∑
x=m+n

e−α(k−κ)

)
‖p‖α,β,κ

≤ e
−α(κ−m+1) + e−α(n+m−κ)

1− e−α
.

For even n choose m = κ−n/2 and for odd n choose m = κ− (n− 1)/2 to
get

‖p(m,n) − p‖1 ≤
2e−αn/2

1− e−α
‖p‖α,β,κ.

Thus there exists an m such that the bound holds and by the definition of Tn
the claim follows. ♠
This bound is now combined with a theorem by Khammash and Munsky [8]

which provides a relation between Tn(p) and the numerical solution of the
cme using the Finite State Projection method to obtain an error bound for
the fsp method.

Consider now the aggregation based approximation. This consists of two
steps, an aggregation step and a disaggregation step. An alternative inter-
pretation uses three steps, an initial smoothing step, a sampling step and a
final smoothing step. While the interpretations are quite different, the results
of the two procedures are identical. Furthermore, the second interpretation
provides access to the tools used in mathematical signal processing. The first
smoothing step is given by the mapping p→ a ∗ p where

(ã ∗ p)(y) =
∑
x∈N

ax−y ∗ px, y ∈ Z .

The ‘filter’ a(x) is defined for x ∈ Z . For notational simplicity and to be
consistent with the reconstruction phase we use the reverse filter ã defined
by

ã(x) = a−x
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and using the convolution theorem one gets the Fourier transform of the

smoothed density (̂ã ? p)(ω) = â(ω)∗p̂(ω) where â(ω)∗ denotes the conju-
gate complex of â. In the special case of aggregation based smoothing one
simply takes the average of neighboring values, more specifically,

(ã ? p)(x) =
1

h

x+h−1∑
y=x

p(y)

and

a(x) =

{
1/h, x = 0, . . . , h− 1 ,

0, otherwise.

The Fourier transform is then

â(ω) = e2πi(h+1)/2 sin(ωh/2)

h sin(ω/2)
.

In a second step the convoluted signal ã ? p is sampled with an operator S
defined by

S (ã ? p)(x) =

{
(ã ? p)(x) for x = jh with j ∈ Z and

0 otherwise.

The sampled sequence provides the computational savings of course as it
requires h times less space to store than the original distribution. An ap-
proximation of the original distribution is then recovered with a second con-
volution with some sequence b so that one gets the approximation

pappr = b ? S(ã ? p).

The sampling S introduces aliasing in the Fourier domain and one has for
the Fourier transform (or characteristic function)

p̂appr(ω) = b̂(ω)

h−1∑
k=0

â(ω+ 2πk/h)∗ p̂(ω+ 2πk/h).
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In the simplest case of piecewise constant approximation one has b = a

and one gets the following bound for the error.

Proposition 4 Let p ∈Mα,β,κ and h/β sufficiently small. Then there exists
a constant C such that

‖pappr − p‖`2 ≤ C(h/β)3/2 ‖p‖α,β,κ.

Proof: Using a triangle inequality and |p̂(ω)| ≤ e−β|ω|‖p‖α,β,κ one gets

‖pappr − p‖`2 = ‖p̂appr(ω) − p̂(ω)‖

≤ ‖p‖α,β,κ

(√∫π
−π

(|â(ω)|2 − 1)2e−2β|ω| dω

+

h−1∑
k=1

√∫π
−π

|â(ω)â(ω+ 2kπ/h)|
2
e−2β|ω| dω

)

The claimed result can then be obtained using standard bounds for â(ω).
♠

Note that h/β is the length scale of the approximation relative to the length
scale β defined by the Fourier transform. A similar proof is used to obtain
error bounds for approximations with other piecewise polynomials b(x). The
application of these approximation error bounds proceeds in the same way
as in the finite state space method using a combination with some stability
estimate. We plan to present this explicitly in a forthcoming paper.
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