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Temperature driven air flow through wine
corks.
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Abstract

Temperature changes during transport can cause significant air
pressure increases within a wine bottle and subsequent loss of air
through the cork. With simple modelling this gives rise to a time de-
pendent logistic equation for the air mass. Various solution methods
are shown and compared, giving rise to a surprisingly rich mathemat-
ical problem which is suitable for university undergraduate courses as
an example of an unusual logistic equation. The solutions indicate
the importance of the head space in the wine bottle, and give upper
bounds on the air flow due to diurnal temperature changes.
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1 Introduction

When wine is transported it may be subject to significant temperature varia-
tions which affect the quality of the wine. A recent Mathematics in Industry
Study Group [4] studied various aspects of this problem, including tempera-
ture dependent chemical reactions and thermal transport through containers
and arrays of bottles. Work was also done to quantify the amount of air lost
through the cork by temperature induced pressure changes. During high tem-
peratures this air loss will include loss of volatiles within the wine, with low
temperatures allowing dry air into the bottle. I use the term ‘cork’ to stand
for a variety of bottle closures, including screw tops and synthetic corks.
While there has been one small study on the effect of transport on wine [3],
there has been no work done on temperature induced air flow through the
cork, and no data is available on any air flow through cork.

Figure 1 shows a schematic of the situation with the wine volume increas-
ing and an induced flux, w(t), through the cork.

The purpose of this current study is two fold. First, a model is developed
for the loss of air mass through the cork and find solution methods which al-
low greater understanding of the fundamental behaviour. Second, I illustrate
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Figure 1: Diagram of a wine bottle showing wine expansion, head space,
and air flow through the cork.
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how, with some basic physical principles, a surprisingly rich mathematical
problem is found, illustrating many concepts taught to mathematics stu-
dents; in this way this problem can serve as a useful undergraduate teaching
tool.

2 Modelling

In this section I develop the model for the amount of air between the wine and
the cork. This assumes the bottle is stored vertically as shown in Figure 1.
The model is based on three physical principles: the perfect gas law for the
air within the bottle; Darcy’s law [1] for air flow through the cork, treated
as a porous material; and the volumetric expansion coefficient of the liquid.

Darcy’s law relates fluid velocity to an applied pressure difference so that

w(t) = k
P(t) − P0

L
, (1)

where w(t) [m/s] is the air velocity through the cork at time t [s], P(t) [Pa]
is the pressure, P0 is atmospheric pressure assumed to be the same as P(0),
k(t) [m2/s/Pa] is the permeability including the viscosity, and L [m] is the
length of the cork. The rate of change of air mass through the cork is then

dm(t)

dt
= −ρ(t)w(t)A = −kA

ρ(t)(P(t) − P0)

L
, (2)

where m(t) [kg] is the mass of air in the gap between cork and wine, A [m2]
the cross-sectional area of the cork, and ρ(t) [kg/m3] is the density of the
air.

The pressure in the air is modelled by the perfect gas law:

P(t)V(t)

m(t)T(t)
=
P(0)V(0)

m(0)T(0)
≡ α , (3)
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where T(t) [K] is the temperature of the air, V(t) [m3] is the volume of air,
and α is a constant.

Combining Equations (2) and (3) gives

dm(t)

dt
= −

k(t)A

L

[
αm2(t)T(t)

V2(t)
−
P0m(t)

V(t)

]
. (4)

The volume of wine in the bottle is also temperature dependent:

Vw(t) = Vw(0){1+ β[Tw(t) − Tw(0)]}, (5)

where Vw(t) is the volume of the wine, mw is the mass of wine, Tw(t) is the
wine temperature, and β(T) [/K] is the volumetric expansion coefficient of
wine. The volume of the bottle, Vb, remains constant hence the air volume
is Va(t) = Vb − Vw(t) .

There are other effects which may be included, but are considered to be
negligible. The permeability, k, will be a function of time. When moist
air is flowing out of the bottle, the viscosity will be higher and hence the
permeability lower. When dry air flows into the wine the permeability will
be higher. The level of moisture in the air will also be temperature dependent
as vapour pressures of key components also change [2]. I also ignore some
complex thermodynamics of saturated gas/liquid interactions.

While possible to model the temperature of the air and wine separately,
I assume here Tw(t) ≈ T(t). Future models will include temperature effects
within the glass, the wine and the air.

This problem is simplified by writing

m(t) = m(0)m∗(t∗), V(t) = V(0)V∗(t∗), (6)

P(t) = P(0)P∗(t∗), k(t) = k(0)k∗(t∗), t = t0t
∗, (7)

where ∗ denotes non-dimensional variables, and the typical time scale is

t0 =
LV(0)

k(0)AP(0)
. (8)
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Equation (4) then reduces to

dm(t)

dt
= −c1(t)m(t)2 + c2(t)m(t), (9)

where I have dropped the ∗ notation herein, and

c1(t) =
k(t)T(t)

V2(t)
, c2(t) =

k(t)

V(t)
. (10)

Equation (9) governs the fundamental equation of our system, which is
driven by changes in T(t) and hence c1(t) and c2(t). This equation is a
logistic equation, common in population biology, but with coefficients which
vary slowly with time. If c1 and c2 were constant then the system would
have an equilibrium mass

m =
c2

c1
=
V(t)

T(t)
≡ γ(t). (11)

Thus with c1(t) and c2(t) changing with time, the mass effectively chases this
changing equilibrium point, which is the solution when just the perfect gas
law is applied, Equation (3). This is the solution when the permeability k of
the cork is infinite, that is, when there is no cork, and forms an upper bound
to the air mass loss.

3 Estimations

In this section I find estimates of mass changes due to wine expansion and due
to temperature induced air pressure changes. I take a typical temperature
range of T = 280K to T = 310K, appropriate for a diurnal cycle. In scaled
coordinates this is a temperature change of 30/280 = ε ≈ 0.11 .
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Assuming no wine expansion, so V(t) = 1 , and a temperature change of
T(t) = 1+ ε , Equation (11) gives the mass change

m− 1 =
1

1+ ε
− 1 ≈ −ε . (12)

That is, the percentage mass loss due to temperature induced pressure changes
in the air volume is roughly 11% for one diurnal temperature change.

The typical wine expansion coefficient is β = 2× 10−4/K [2, 6, 7]. For a
standard 750ml bottle of wine the volume increase over 30 degrees is reported
to be in the range of 4.73–7.4ml compared with a head space volume in the
order of 5–15ml. Hence the upper limit of proportional mass loss due to wine
expansion is of the order of 30–100% and is hence very comparable to the
changes due to pressure increases within the head space. This also implies
that overfilled bottles, with little headspace, are particularly prone to wine
expansion effects if temperate changes are large. Anecdotally, manufacturers
have reported international shipments of wine where temperature changes
have been large enough for the pressure to expel a third of the corks. Almost
certainly this is due to insufficient headspace to allow for wine expansion.

4 Approximate solutions

Equation (9) is difficult to solve exactly, hence I analyse various approximate
solutions and compare these for a linear temperature change. These ap-
proximations assume that the driving temperature T(t) changes slowly and
remains close to the initial equilibrium state.

The first approximate solution, labelled S1 in the figures below, is simply
the upper limit m = γ , Equation (11). The second solution, labelled S2,
assumes c1(t) and c2(t) are constant in Equation (9), so that

m(t) ≈ γ(t)m(0)

m(0) + [γ(t) −m(0)] exp[−c2(t)t]
. (13)
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This solution will have errors of order dγ/dt and dc2/dt. As t → ∞ the
mass approaches the equilibrium solution m → γ .

Another approximation assumes the solution remains close to the equi-
librium so that Equation (9) becomes

dm(t)

dt
≈ −c2(t)[m(t) − γ(t)], (14)

with solution

m(t) ≈ m(0) +

∫t
τ=0
c2(τ)γ(τ) exp

(∫τ
0
c2(z)dz

)
dτ

exp
(∫t

0
c2(τ)dτ

) . (15)

Whilst this approximate solution can be evaluated, it is not illuminating
since simple expressions for m(t) are not available for all but the most trivial
temperature changes, and even numerically it is cumbersome to evaluate.
As the key variables c2(t) and γ(t) change it is not entirely clear how m(t)

changes using this expression. Thus Equation (15) does not give physical
insight into how m(t) changes as key parameters vary. Hence I consider
a technique described by Shepherd and Stojkov [5]. The method uses two
different time scales, t0 ≡ t and t1 ≡ εt , with ε small and c2 = c2(t1) and
γ = γ(t1). That is, c1 and c2 vary on the slower time scale, whilem(t) chases
equilibrium on a faster time scale. The mass is written as m = m(t0, t1, ε)

with Equation (14) becoming

∂m

∂t0
+ ε

∂m

∂t1
= −c2(t1)[m− γ(t1)] . (16)

Expanding
m = m0(t0, t1) + εm1(t0, t1) + · · · (17)

and equating coefficients gives

∂m0

∂t0
= −c2(t1)[m− γ(t1)], (18)
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∂m1

∂t0
= −c2(t1)m1 −

∂m0

∂t1
. (19)

These have solutions, using the initial condition m = ma(0),

m0 = (m(0) − γ)e−c2t0 + γ , (20)

m1 =

(
γ ′t+

1

2
(m(0) − γ)c ′2t

2 −
γ ′

c2
ec2t +

γ ′

c2

)
e−c2t0 , (21)

where γ and c2 are functions of t1 and hence γ ′ = dγ/dt1 . Equations (17),
(20) and (21) represent my third solution, labelled S3.

This third solution has the long term behaviour

m(t) ≈ γ(εt) − ε
γ ′(εt)

c2(εt)
. (22)

That is, the mass attempts to reach the equilibrium point γ but since this
equilibrium keeps changing slowly with time, it lags by a small amount. In
the resultant figures I label this result, Equation (22), as S4.

5 Results

This section considers the numerical and approximate solutions for a simple
linear temperature change, in scaled coordinates, of T = εt , for t > 0 with
T = 1 for t ≤ 0 . All results shown here use ε = 0.1 . These solutions are
scaled and hence irrespective of absolute temperature and pressures. How-
ever, inclusion of wine expansion requires some volume dimensions. I consider
a 750ml bottle of wine, a 4 cm long headspace of radius 1 cm, β = 2×10−4 /K
as the volumetric expansion coefficient, and an initial temperature of 10◦C.

The numerical solutions to Equation (9) was done using a standard first
order Euler time step m(t + dt) ≈ m(t) + dt dm

dt
. The routine was tested
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Figure 2: Air mass versus time for a linearly changing temperature with
wine volume increasing. Results correspond to different solution types.

for convergence and found to be O(dt) accurate as expected. A value of
dt = 0.01 , for a range of t ∈ [0, 2.5] was used giving solutions to within 0.01%
accuracy.

Figure 2 shows the scaled mass of air changing as a function of time.
The various solutions shown are: the numerical solution to Equation (9),
labelled ‘num’; the fully permeable solution, Equation (11)—labelled S1;
the approximation with c1 and c2 assumed constant, Equation (13)—S2;
the perturbation solution, Equation (17)—S3; and the asymptotic solution,
Equation (22)—S4. These results illustrate that the numerical solution is
bounded between the asymptotic limits given by S4 and the freely permeable
cork solution S1.
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Figure 3: Air mass versus time for a linearly changing temperature with
wine volume constant. Results correspond to different solution types.

I note that the behaviour shown here is slightly different to that illus-
trated by Mercer et al. [4] which took the simplified case of constant air
volume. These results are recalculated in Figure 3 which better illustrates
how the numerical solution approaches the limiting solutions γ with a time
lag dependence. This would be the situation where the headspace volume was
large enough that volumetric expansion effects of the wine was unimportant.

In Figures 4 and 5 the pressure within the head space is modelled for
both of the varying volume and constant volume cases discussed in Figures 2
and 3. For Figure 5 where volume is held constant, the various strengths and
behaviour of the models are clear with the numerical solution approaching
the asymptotic solution S4 and being well matched by the approximation
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Figure 4: Air pressure within the headspace as a function of time with wine
expansion. Results correspond to different solution types.

S3. In Figure 4 the asymptotic solutions do not match the pressure results,
except for small times when the approximation assumptions of being close
to equilibrium are valid. In these scenarios the increase in wine volume is
reducing the air volume to zero, making the dynamics very complicated.

6 Conclusions

I have explored a simple model of temperature effects on air flow through a
wine cork. By coupling basic physical laws, a logistic type equation is recov-
ered with time varying coefficients. When volumetric expansion of the wine
is minimal then various asymptotic solutions can be shown to approximate
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Figure 5: Air pressure within the headspace as a function of time with no
wine expansion. Results correspond to different solution types.
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the amount of air mass left in the head space. In particular, these show how
the solution tends towards the changing equilibrium state with a time lag
dependent on the rate of equilibrium change, Equation (22). However, in
cases where wine expansion is a dominant effect, the full numerical solution
is necessary.

This study is not designed as an extensive analysis of this problem, and
there are many aspects that warrant further investigation. These include
allowing for other temperature dependent effects such as vapour pressures,
thermodynamics, solubility and air density changes. These are the subject
of future research.
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