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A method for evaluating the modes of
variability in general circulation models
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Abstract

The seasonal mean of an atmospheric climate variable is consid-
ered to be a statistical random variable with two components: a slow
component related to slowly varying forcing from external and internal
atmospheric sources (time scale of a season or more), and an intrasea-
sonal component related to forcing from weather variability with time
scale less than a season. Here, a method is proposed to compare the
modes of variability obtained from eigenvalue decomposition of the
slow and intraseasonal covariance matrices estimated from reanalysis
data with modes of variability estimated from a set of coupled gen-
eral circulation models. As an example, the method is applied to the
Southern Hemisphere summer 500hPa geopotential height for the pe-
riod 1951–2000. The method is applicable to many other atmospheric
climate variables and datasets.
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1 Introduction

The variability of the atmospheric circulation is controlled by many phys-
ical processes, which may act on time scales ranging from days to years.
How these physical processes, or modes, are affected under climate change
scenarios is able to be investigated by General Circulation Models (gcms).
However, in order to better assess the reliability of any changes in variability,
it is necessary to compare the modes of variability estimated from gcms with
those estimated from a reference sample.

The seasonal mean of a climate variable is considered to be a statistical
random variable consisting of signal and noise components [3]. The signal is
related to slowly varying (a season or more) boundary, or external, forcings
or internal atmospheric variability and is considered as the ‘slow’ component
of interannual variability of the seasonal mean [10]. The noise is related to
internal atmospheric variability with time scales of about two weeks to a
season and is considered as the ‘intraseasonal’ component of variability [10].

Frederiksen and Zheng [3] reviewed methods to estimate the intraseasonal
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variance. Recently, a method has been formulated to estimate the intrasea-
sonal covariance from monthly mean data [10]. The method has been applied
to reanalysis data of the 500 hPa geopotential height field, in both hemi-
spheres, for summer and winter [2, 4]. However, it is also possible to apply
the method to individual realisations from gcms. Here, by interpolating all
gcm realisations onto the same grid as the reanalysis data, the intraseasonal
and slow modes of variability are compared.

2 Methodology

2.1 Statistical model

Given the statistical model described in the Introduction, the monthly mean
anomaly of a climate variable x at a geographical location r (r = 1, . . . , R) is
represented as [10]

xym(r) = µy(r) + εym(r) , (1)

where m (m = 1, 2, 3) is the month index in the season, y (y = 1, . . . , Y) is
the year index, Y is the total number of years, µy(r) is the seasonal popu-
lation mean in year y taken from an infinite population, and εym(r) is the
residual monthly departure of xym(r) from µy(r). Here, we assume that the
vector {εy1(r), εy2(r), εy3(r)} is a stationary and independently distributed
random vector with respect to year y. In practice, neither µy(r) or εym(r)

are able to be directly calculated. However, the covariance V between x at
two locations r1 and r2 is

V(xyo(r1), xyo(r2)) = V(εyo(r1), εyo(r2)) + V(µy(r1), µy(r2))

+ V(µy(r1), εyo(r2)) + V(µy(r2), εyo(r1)) , (2)

where a subscript “o” represents the average over an index (m or y).
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Zheng and Frederiksen [10] applied stationary assumptions to the statis-
tics of monthly data. The intraseasonal covariance V(εyo(r1), εyo(r2)) is then
estimated as

V̂(εyo(r1), εyo(r2)) =
1

9

[
σ̂2

2(3+ 4φ̂)
]
, (3)

where
σ̂2 =

a

2(1− φ̂)
≈ V(εym(r1), εym(r2)), m = 1, 2, 3 , (4)

is the covariance of the intraseasonal component in each month,

φ̂ =
a+ 2b

2(a+ b)
, 0 ≤ φ̂ ≤ 0.1 , (5)

is the intermonthly correlation between consecutive months, and

a =
1

2

{
1

Y

Y∑
y=1

[xy1(r1) − xy2(r1)] [xy1(r2) − xy2(r2)]

+
1

Y

Y∑
y=1

[xy2(r1) − xy3(r1)] [xy2(r2) − xy3(r2)]

}
, (6)

b =
1

2

{
1

Y

Y∑
y=1

[xy1(r1) − xy2(r1)] [xy2(r2) − xy3(r2)]

+
1

Y

Y∑
y=1

[xy2(r1) − xy3(r1)] [xy1(r2) − xy2(r2)]

}
. (7)

The variables a and b in equations (6) and (7) represent monthly moments
of xym(r) and are directly sampled. The total interannual covariance is esti-
mated from the sample seasonal mean as

V̂(xyo(r1), xyo(r2)) =
1

Y − 1

Y∑
y=1

[xyo(r1) − xoo(r1)] [xyo(r2) − xoo(r2)] . (8)
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The slow covarince is then estimated as the residual

V̂(µy(r1), µy(r2)) = V̂(xyo(r1), xyo(r2)) − V̂(εyo(r1), εyo(r2)) . (9)

In order to reduce sampling error when estimating the intraseasonal covari-
ance, the truncation method described by Zheng and Frederiksen [10] is used.
To ensure that the estimated intraseasonal and slow covariance matrices are
positive semi-definite, the nearest positive semi-definite matrix is estimated
using the method of Higham [5]. Finally, the untruncated intraseasonal
and slow components of variability at each location r are estimated using
the method of Zheng et al. [11]. This method also assumes stationarity of
the monthly statistics. Since stationarity implies that inter-monthly covari-
ances are equal, the equations used at location r are obtained by substituting
r = r1 = r2 into equations (3)–(9) above. The intraseasonal and slow co-
variance matrices are then scaled such that their diagonal is equal to the
respective grid point variability. The total, intraseasonal and slow modes of
variability are then obtained from the eigenvalue decomposition [8] of the
repsective estimated covariance matrices.

2.2 Comparison between samples

The relationship between the centred root-mean square difference E ′ between
two samples x and x ′ is

E ′2 = σ2
x + σ2

x ′ − 2σxσx ′C , (10)

where σ is the sample standard deviation and C is the correlation between x
and x ′. Taylor [9] noted that equation (10) resembles the law of cosines in
trigonometry. This enables graphical representation of the statistical prop-
erties of comparisons between patterns from different samples relative to a
reference sample. By interpolating fields from all samples onto the same
grid as the reference sample, then for the eigenvalue decomposition of the
covariance matrices we have the following.
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1. Correlation of the eigenvectors, or Empirical Orthogonal Functions
(eofs), gives the pattern correlation between the reference and other
sample modes of variability.

2. If the eofs are normalised to unit length, then the eigenvalues are the
variances for each mode of variability. The square root of the eigenvalue
is the standard deviation of the mode of variability.

3. The estimates of the standard deviation of the reference and other
sample modes of variability will be comparable, since the sum of the
eigenvalues is equal to the trace of the matrix.

3 Example

To illustrate the methodology, a comparison was done between reanalysis and
gcm data for the 500 hPa geopotential height for the Southern Hemisphere
summer (December-January-February) for the second half of the 20th Cen-
tury. The reanalysis data was obtained from the National Centers for En-
vironmental Prediction (ncep) National Center for Atmospheric Research
dataset [6] for the period 1951–2000. Data from the supplied 2.5◦ × 2.5◦
latitude/longitude grid was sub-sampled to 5◦ × 5◦, with thinning towards
the poles as described by Zheng and Frederiksen [10]. The leading four eofs
for the intraseasonal and slow covariance are shown in Figures 1 and 2. The
eofs explain, collectively, 55% and 83% respectively of the intraseasonal and
slow covariance. An analysis of the eofs, using data from 1949–2002, was
given by Frederiksen and Zheng [4]. These eofs are the reference eofs for
this comparion.

gcm data were obtained from the World Climate Research Programme
(wcrp) Coupled Model Intercomparison Project phase 3 (cmip3) multi-
model dataset [7]. Data for 68 realisations from 22 gcms were obtained for
the cmip3 experiment using 20th Century forcings. The cmip3 realisations
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Figure 1: Leading four eofs of the intraseasonal covariance from the ncep
reanalysis for 1951–2000 Southern Hemisphere summer 500 hPa geopotential
height. The eofs are normalised to unit length. The square root of the
eigenvalue (units m) is given next to each eof.
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Figure 2: Leading four eofs of the slow covariance from the ncep reanalysis
for 1951–2000 Southern Hemisphere summer 500 hPa geopotential height.
The eofs are normalised to unit length. The square root of the eigenvalue
(units m) is given next to each eof.
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Figure 3: Pattern correlation and normalised standard deviation between
cmip3 realisations and reference data for each reference eof for (a) intrasea-
sonal, and (b) slow covariance. Each point represents the best match from a
cmip3 realisation to the given reference eof.

were interpolated onto the ncep reanalysis grid using distance based weights
with a finite radius [1]. For each cmip3 realisation, the highest pattern cor-
relation from the leading six eofs with the reference modes of variability
was obtained. Where two or more eofs from a cmip3 realisation had similar
pattern correlations with the reference mode, the best match was re-checked
by manual inspection of the eofs.

The results for all 68 cmip3 realisations for the intraseasonal and slow
covariance components are shown in Figure 3 as Taylor diagrams [9]. For
each mode of variability, the standard deviations have been normalised by the
reference standard deviation. This does not change the pattern correlation,
and enables the results from different modes of variability to be shown on the
same diagram. The radial distance gives the normalised standard deviation
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and the azimuth gives the pattern correlation. For both the intraseasonal
and slow covariance, the leading mode (the Southern Annular Mode [4])
is generally well reproduced. For the intraseasonal covariance (Figure 3a),
modes 2, 3 and 4 are less well reproduced, although they are present in
most cmip3 realisations in some order. However, for the slow covariance
(Figure 3b), modes 2, 3 and 4 are often poorly reproduced, reflected in the
low pattern correlation and/or normalised standard deviation.

Figure 3 shows that the cmip3 realisations generally underestimate the
variability associated with all the intraseasonal and slow modes, as indicated
by normalised standard deviations of less than 1.0. To check if this is due to
the cmip3 realisations preferring higher modes of variability, the sum of the
eigenvalues was calculated for each component. Results (Figure 4) indicate
that the eigenvalue sums for both the intraseasonal and slow covariances
are generally underestimated in the cmip3 realisations with respect to the
reference data. This appears to extend from the total covariance eigenvalue
sum (not shown) also being generally underestimated.

4 Conclusions

We have described how an existing method for estimating the intraseasonal
and slow modes of variability can be extended to comparing data from gcm
realisations with a reference dataset. By interpolating the gcm data onto
the same grid as the reference data, consistent comparisons of the variability
of each mode and the pattern correlation are obtained. For realisations from
the 20th Century climate scenario of the cmip3 dataset, the leading mode
of the intraseasonal and slow covariance for 500 hPa geopotential height in
the Southern Hemisphere summer is generally well reproduced. Modes 2, 3
and 4 are less well reproduced, although the intraseasonal modes are better
reproduced than the slow modes. The variability of all modes in the cmip3
realisations is generally underestimated. This appears to extend from the
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Figure 4: Eigenvalue sum from the eof decomposition of the (a) intrasea-
sonal, and (b) slow covariance matrices. Unlabelled bars are individual
cmip3 realisations from the 20th Century experiment. The ‘mean’ bar de-
notes the sum averaged over all 68 cmip3 realisations. The ‘Ref.’ bar denotes
the ncep reanalysis.
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cmip3 realisations underestimating the reference total covariance eigenvalue
sum.
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