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Post-processing of solutions of incompressible
Navier–Stokes equations on rotating spheres
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Abstract

We describe a post-processing technique (requiring only solutions
of linear stationary problems) to improve the resolution of Galerkin so-
lutions of the time dependent nonlinear incompressible Navier–Stokes
equations on the rotating unit sphere. Numerical experiments illus-
trate the advantage of this more efficient method to simulate higher
modes to approximate the divergence-free velocity field.
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1 Introduction

The pseudospectral Galerkin method is a standard approach for computer
modelling of the large scale atmospheric dynamics through the Navier–Stokes
equations (nse) on the rotating Earth, see for example the recent work by
Fengler and Freeden [3] and references therein. The computable pseudospec-
tral solution with N modes, approximating the unknown tangential surface
divergence free velocity field of the nse, is of the form

uN =

N∑
n=1

∑
|m|≤n

αn,m(t)Zn,m, (1)

where Zn,m are the tangential surface divergence free eigenfunctions of the
Stokes operator on the chosen manifold, approximating the shape of the
Earth. The rotating manifold was chosen to be the unit sphere by Fengler and
Freeden [3]. (A standard surface model to study the atmospheric circulation
on large planets is the sphere.) The number of time dependent unknowns
in (1) is N2 + 2N and in pseudospectral methods these are obtained by first
projecting the spatial part of the nse into the approximation space spanned
by the N2 + 2N eigenfunctions, leading to the Galerkin (Fourier coefficient)
equations, and then simulating the resulting (N2+2N)-dimensional nonlinear
stiff ordinary differential systems in time. At each small time step of the
evolution process the computational cost is dominated by setting up of the
quadratic nonlinearity in the projected nse with O(N4) terms. Recall that
each Fourier coefficient requires integration on the sphere and approximation
by quadratures which substantially increases the computational complexity.
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In order to obtain a fine resolution in the approximate velocity field, the
value of N in (1) needs to be high. In the case of three dimensional time-
dependent nonlinear partial differential equations, due to O(N4) complexity
in setting up the nonlinear equations at each time step and evolving over a
long period of time, it is desirable to simulate with as small a value of N as
possible and yet obtain accurate velocity and pressure fields.

In particular, for the nse on periodic domains, after solving appropriate
nonlinear time dependent systems only for low frequency approximations,
one may obtain some of the remaining modes using approximate inertial
manifolds (Marion and Temam [8]). The exact inertial manifold is an opera-
tor that determines the high frequency modes as a function of the computed
low frequency modes.

There are several ways to approximate the exact inertial manifold. For
example one may restrict to 2N modes and then, based on the physical
behaviour of the velocity field, use a linearised version of the nse. One such
well known approximate inertial manifold method, leading to higher modes in
the velocity field from low frequency modes, is called the nonlinear Galerkin
method, introduced by Marion and Temam [8] for the nse on bounded two
dimensional domains with the nonslip boundary condition or on the plane R2

with periodic boundary conditions. For the rotating sphere model, Fengler
and Freeden [3] used the nonlinear Galerkin method to obtain approximate
velocity fields with 2N modes.

The nonlinear Galerkin method has the advantage of reducing the non-
linearity in the evolution system of the standard Galerkin approximations.
However, for each small positive evolution time step, to obtain the low fre-
quency nonlinear Galerkin solutions, the corresponding high frequency modes
should be computed as well. In particular, the main disadvantage of the non-
linear Galerkin method [3] is that for computing the 2N modes, a 4(N2 +N)-
dimensional coupled system of differential equations needs to be simulated,
with the first (N2 + 2N)-dimensional equation being nonlinear and the rest
being linear elliptic problems.
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An ideal approach would be to first compute low frequency approxima-
tions, say uN(t), for all t ∈ [0, T ] and then, for any particular desired time t∗,
obtain high-resolution modes by solving just one simple stationary equation
using uN(t∗). Such a method, known as the post-processing technique, was
introduced by Archilla et al. [1] as a novel approach to approximate inertial
manifolds. This method was applied for some parabolic problems on do-
mains and yielded solutions with accuracy similar to the nonlinear Galerkin
solutions.

This article develops a post-processing version of the recent work [5]
on the pseudospectral quadrature Galerkin method for the nse on rotat-
ing spheres. We recall the weak form of the nse in the next section and
describe the post-processing approach in Section 3. Numerical experiments
in Section 4 for a known velocity field with 2N Fourier modes and a bench-
mark velocity flow generated by a random initial velocity field with Reynolds
number of the order 104 highlight the efficiency of this post-processing ap-
proach.

2 The NSE on the rotating surface

We are interested in simulating a tangential velocity flow on the unit sphere S,
denoted by u = u(x̂, t) = (u1(x̂, t), u2(x̂, t), u3(x̂, t))

T , x̂ ∈ S and t ∈ [0, T ],
with pressure p = p(x̂, t), satisfying the the incompressible nse [3, 6, 7, 9]

∂

∂t
u +∇uu − ν∆u + ω× u +

1

ρ
Gradp = f on S , (2)

u|t=0 = u0 , Div u = 0 on S, (3)

where the velocity flow is driven by the external field f = f(x̂, t), the rotation
effect is included in the normal vector field Coriolis term ω(x̂) = 2x̂Ω cos θ ,
with constant rotation rate Ω, cos θ being the vertical third component of
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x̂ ∈ S and θ is the latitudinal variable. In (2), ν and ρ are respectively the
constant viscosity and density of the fluid.

Note that all spatial differential operators in (2)–(3) are defined on the
surface S. Among these, the surface divergence and gradient, denoted respec-
tively by Div,Grad, are well known [6, 7], and the vector Laplace–Beltrami
operator -∆ satisfies

− ∆v = Curl Curlx̂ v − Grad Div v (4)

where the rate of rotation of a scalar function v, a normal vector field w =

wx̂ , and a tangential vector field v on S are respectively defined by

Curl v = −x̂×Grad v , Curl w = −x̂×Gradw , Curlx̂ v = −x̂ Div(x̂×v).

In (2), the nonlinear term ∇uu is the covariant derivative

2∇wv = − Curl(w × v) + Grad(w · v) − v Div w + w Div v

− v × Curlx̂ w − w × Curlx̂ v . (5)

Restriction of the vector Laplace–Beltrami operator in (4) to the tangential
divergence free functions reduces to the Stokes operator

A = Curl Curlx̂ = −∆PCurl, (6)

where PCurl is the projection onto the space of smooth tangential divergence
free functions, denoted throughout by V . The infinite dimensional space V
is spanned by all polynomial eigenfunctions of the Stokes operator of degree
n = 1, 2, . . . . For a fixed degree n, there are 2n + 1 degree n orthonormal
eigenfunctions, denoted throughout by Zn,m, m = −n, . . . , n . Here the
orthonormality is with respect to the L2-inner product (·, ·) for vector fields
(and the associated L2-norm is denoted throughout by ‖ · ‖).

The next step is to remove the pressure term Gradp in (2). This is
achieved by a weak formulation. That is, multiply (2) by functions in V and
integrate using the Gauss surface divergence theorem to remove Gradp:

(Gradp,w) :=

∫
S

Gradp · w̄ dS = −

∫
S

p ·Div w̄ dS = 0 , w ∈ V. (7)



3 A post-processing pseudospectral method C95

For the nonlinear term in the weak formulation of (2), we consider

b(v,w, z̄) = (∇vw, z̄) =

∫
S

∇vw · zdS , v,w, z ∈ V . (8)

The Coriolis operator on V is defined by

(Cv)(x̂) = ω(x̂)× v(x̂) = ω(x̂)(x̂× v), ω(x̂) = 2Ω cos θ ,

for v ∈ V and x̂ ∈ S . Thus, a weak form of the nse (2)–(3) is

∂

∂t
(u,v)+b(u,u,v)+ν(Curlx̂ u,Curlx̂ v)+(Cu,v) = (f ,v), v ∈ V , (9)

or in operator form with (B(u,u),v) = b(u,u,v), (9) is written as

∂

∂t
u + νAu + B(u,u) + Cu = f , u(0) = u0 . (10)

3 A post-processing pseudospectral method

The pseudospectral quadrature Galerkin method for the nse was developed
and analysed in detail by Ganesh et al. [5] with approximate velocity in

VN := span{Zn,m : n = 1, . . . ,N , m = −n, . . . , n}. (11)

Let ΠN be the orthogonal projection from V onto VN and let QN = I−ΠN .
The solution of (9) is decomposed uniquely as

u = pN + qN , pN = ΠNu , qN = QNu .

Details described by Ganesh et al. [5] lead to computation and analysis of

uN(t) :=

N∑
n=1

∑
|m|≤n

αn,m(t)Zn,m , (12)
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duN

dt
+ ΠNB(uN,uN) + νAuN + CuN = ΠNf , uN(0) = ΠNu0 ,(13)

where we used that A and C map VN to VN because Zn,m are eigenfunctions
of A, for n = 1, . . . ,N , m = −n, . . . , n , and (CZn,m,Zj,k) = 0 if n 6= j or
m 6= k , for j = 1, 2, . . . and k = −j, . . . , j .

The system (13) has N2 + 2N coupled ordinary differential equations
for the unknown coefficients αn,m(t) in (12). Error analysis by Ganesh et
al. [5] gives a spectrally accurate upper bound for ‖u − uN‖. For a lower
bound, note that the Galerkin error u − uN can never be smaller than the
best-approximation error u − pN = qN , that is

‖u − uN‖ ≥ ‖u − pN‖ = ‖qN‖.

To construct a solution with higher resolution, we rewrite (10) as

dpN

dt
+ (νA + C)pN + ΠNB(pN + qN,pN + qN) = ΠNf , pN ∈ VN , (14)

dqN

dt
+ (νA + C)qN +QNB(pN + qN,pN + qN) = QNf , qN ∈ V \ VN .

(15)

The existence of a function Φ such that qN = Φ(pN) was proven by several
researchers (Temam and Wang [9] for example). The graph of Φ is known as
the inertial manifold. The existence of the inertial form suggests that in the
first equation (14), qN may be replaced by Φ(pN) to obtain solutions with
high resolution, but an analytical or computable form of the exact inertial
manifold is not known in general.

The next step is to consider a computable Φapp that approximates the
exact inertial form Φ. The graph of Φapp, {(v, Φapp(v)) | v ∈ VN} is known
as an approximate inertial manifold. A concrete representation of Φapp can
be obtained using the observation by Foias et al. [4], that, under certain
constraints, in (15), terms containing qN other than (νA + C)qN can be
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considered negligible compared to other terms in the full system. Hence
from (15), the observation leads to an approximation

Φapp(pN) = Φ1(pN) := (νA + C)−1QN[f − B(pN,pN)]. (16)

Approximating QN by Q̃N = Π2N−ΠN yields the computable approximation

Φ̃app(pN) = Φ̃1(pN) := (νA + C)−1Q̃N[f − B(pN,pN)]. (17)

The nonlinear Galerkin method is based on (17). More precisely, to obtain
nonlinear Galerkin solutions with 2N modes, we get a 4(N2+N)-dimensional
coupled system, with the first N2 + 2N equations given by (14) with qN

replaced by Φ̃1(pN) and the remaining 3N2 + 2N equations for the un-
known Φ̃1(pN) given by (17), leading to the system requiring higher res-
olution solutions for simulation to move from one time step to the next.
Thus each time step requires solutions of elliptic problems on the surface.

A less expensive approach is the post-processing Galerkin method, which
was proposed initially for partial differential equations on periodic domains
by Archilla et al. [1]. The post-processing algorithm to compute a field wN

with 2N modes, approximating the velocity field u of (2)–(3) at any fixed
time t∗ is to

1. use a pseudospectral quadrature Galerkin algorithm to compute uN(t∗)

in (12)–(13);

2. solve the linear stationary elliptic problem

(νA + C)zN = Q̃2N

{
f − B

(
uN(t∗),uN(t∗)

)}
, Q̃2N = Π2N − ΠN ;

3. The new post-processed higher resolution approximation to the velocity
field u(t∗) is wN(t∗) := uN(t∗) + zN .

In the above post-processing algorithm, 2N can be replaced by cN, for any
integer c ≥ 2 . A complete mathematical analysis of the algorithm, following
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details as described by Archilla et al. [1] and the recent work by Ganesh et
al. [5], proving the spectral accuracy of the post-processed solution, is beyond
the scope of this article.

4 Numerical results

In this section, we simulate (2)–(3) for two classes of the velocity field. The
first class of field is induced by a tangential divergence free external force
with 2N modes (for various choices of N) and the force is chosen so that the
exact velocity field is known. The benchmark second test case is considered
in several references such as [2, 3], where the velocity field is generated by
a random initial state with fewer modes at t = 0 than that present in the
fields at t > 0 . For both these simulations, the Reynolds number is of the
order ν−1 = 10, 000 , where ν is the constant viscosity factor in (2).

For the first example, the free external force and initial state in (2)–(3)
with 2N modes were chosen so that the exact velocity field is

u(t) =

2N∑
n=1

g(t)

[
Zn,0 + 2

n∑
m=1

<(Zn,m)

]
, (18)

where <(·) denotes the real part, and g(t) is the slowly decaying oscillatory
function

g(t) = ν

[
g1(t, a, c)

(a2 + c2)
+
g2(t, b, c)

(b2 + c2)

]
exp(ct), a = 5, b = 10, c = −0.1,

where

g1(t, a, c) = −a cos(at) + c sin(at), g2(t, b, c) = c cos(bt) + b sin(bt).

We computed the low frequency solution with N modes by solving (13) with
details given elsewhere [5]. The initial state Galerkin error, before beginning
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Figure 1: Error in post-processed solution with 2N = 100 and Galerkin
initial state error 0.1243× 10−2.
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the adaptive time simulation of (13), is measured by the l2-norm of the
unused vector with Fourier coefficients of the modes N + 1 to 2N. The
adaptive time simulation error tolerance was chosen to be smaller than the
initial state Galerkin error. The power of the post-processing approach to
approximate the velocity field (18) is demonstrated in Figure 1, where the
post-processed solution error for all time is better than the initial Galerkin
error with N = 50 . (We observed similar results for various values of N.)

The second example is (2)–(3) with a random field initial state having
20 modes and the external force being a tangential surface divergence free

field with only one non-vanishing time-dependent Fourier coefficient f̂(t)3,0 .
These two source fields, given in Figure 2, are similar to those considered by
many researchers [2, 3, 5] and differ mainly by the randomness of the initial
state.

For this unknown velocity field test case, as discussed by Debussche et
al. [2] and by Ganesh et al. [5], after a sufficient large time, the nth mode en-
ergy spectrum decays with O(n−4) for n within the inertial range and decays
exponentially for n in the dissipation range. Hence in this random initial field
test case, the post-processing solution effect is seen mainly at earlier evolu-
tion time periods. In particular, the evolution process is such that the initial
random flow with several smaller structures will slowly evolve into regular
flow with larger structures. Simulation of this flow was carried out first with
N = 50 and then post-processed to obtain approximate velocity field with
2N modes. The simulation results in Figure 3–5, for t = 10, 20, 30 high-
light the power of the post-processing that captures the transition of initial
random flow to a regular flow, while the standard Galerkin pseudospectral
solution with N = 50 leads to regular flow even at t = 10 .
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Figure 3: Velocity u50(t) (above) and post-processed velocity (below) at
t = 10 .
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Figure 4: Velocity u50(t) (above) and post-processed velocity (below) at
t = 20 .
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Figure 5: Velocity u50(t) (above) and post-processed velocity (below) at
t = 30 .
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