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The total quasi-steady state assumption: its
justification by singular perturbation and its
application to the chemical master equation
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Abstract

Deterministic models of enzymatic reactions based on the quasi-
steady state assumption (qssa) and total quasi-steady state assump-
tion (tqssa) have been used successfully in the past. This is surprising
as the qssa and tqssa can neither be verified mathematically nor by
experiment for most cases of interest. Here, we discuss an approach
using singular perturbation theory to justify the approximation ob-
tained by tqssa. In addition, we extend the application of tqssa to
the stochastic model to deal with stiff differential equations originating
from the chemical master equation.
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1 Introduction

One of the most well-known enzymatic reactions is the so-called Michaelis–
Menten mechanism:

E+ S
κ1⇀↽
κ−1

C
κ2−→ E+ R (1)

which is an irreversible conversion of the substrate, S, into the product, R,
through the formation of an intermediate species named complex, C, cat-
alyzed by the enzyme, E. The forward and backward rate constants, here κ1,
κ2 and κ−1, are used for description of the reaction kinetics (see equation (2)
and (3)).

Michaelis and Menten [7] proposed that the amount of complex is neg-
ligible compared to the amount of substrate in the system (1) where the
amount of enzyme present is relatively small compared to the substrate [8].
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Briggs and Haldane [3] then extended this idea by postulating that the con-
centration of the complex remains constant in the enzymatic reaction. This
approximation is known as the quasi-steady state approximation (qssa). By
utilizing such an assumption, the fast dynamics of the complex are eliminated
from the system and thus the model complexity and computational cost are
reduced.

2 Total quasi-steady state approximation

In some cases, the enzyme concentration is virtually the same or greatly
exceeds the substrate concentration in the actual biochemical environment.
Thus, the standard qssa breaks down in the circumstance where there is
an excess of enzyme level [2]. In dealing with the invalidity of the qssa,
Borghans and collaborators [2] proposed a new approach, the total quasi-
steady state approximation (tqssa), by introducing a lumped variable, the
total substrate concentration [S̄] = [S] + [C], to replace the free substrate
concentration [S] in classical qssa. We use [X] to denote the concentration
of species X as a function of time and X(t) to denote the value of this function
at time t.

The rate equations for the reactions (1) in the tqssa framework are [2]

d[S̄]

dt
= −κ2[C] , (2)

d[C]

dt
= κ1(E0 − [C])([S̄] − [C]) − (κ−1 + κ2)[C] , (3)

with initial conditions S̄(0) = S0 and C(0) = 0 . The concentrations [E]

and [P] are obtained from the conservation laws [E]+[C] = E0 and [S]+[C]+

[P] = S0 where E0 is the total enzyme concentration and S0 is the total sub-
strate concentration [9]. The association (κ1) and dissociation (κ2 and κ−1)
rate constants carry the units nM−1min−1 and min−1 respectively.
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An inspection of the phase plane for the system of rate equations and
further analysis of equations (2) and (3) reveals that a steady state exists
at ([S̄], [C]) = (0, 0) and that the complex concentration [C] evolves in two
stages:

1. the transient stage or pre-steady state characterised by a rapid increase
of [C];

2. the quasi-steady state during which the complex concentration slowly
decays towards the steady state.

In addition, the qssa and tqssa postulate that during the pre-steady state
the concentrations [S] (qssa) and [S̄] (tqssa) are approximately constant [9].
With this assumption, Borghans and collaborators [2] defined two time scales
for the system: the fast transient period of the complex in the pre-steady
state, tc, and the slow time scale for the significant depletion of [S̄] after the
transient period, tS̄. Specifically, they suggested

tc =
1

κ1(E0 + S0 + κm)
and tS̄ =

E0 + S0 + κm

κ2E0

where κm = (κ−1 + κ2)/κ1 is the Michaelis–Menten constant.

3 Singular perturbation analysis of tQSSA

Here we present a mathematical justification for the tqssa in terms of sin-
gular perturbation theory. In particular, we show how to include the initial
condition C(0) = 0 which cannot be satisfied in the original tqssa. We have
the following steps:
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1. In equations (2) and (3), we scale the variables (see Section 3.1 and 3.2)
to yield the equivalent system

dsO(T ; ε)

dT
= f1

[
sO(T ; ε), cO(T ; ε)

]
,

ε
dcO(T ; ε)

dT
= f2

[
sO(T ; ε), cO(T ; ε)

]
.

By a theorem of Tikhonov [10], the solution of this system converges
to the solution of the differential algebraic equations (daes):

dsO(T ; 0)

dT
= f1

[
sO(T ; 0), cO(T ; 0)

]
, 0 = f2

[
sO(T ; 0), cO(T ; 0)

]
(4)

in the outer region as ε→ 0 , for example, sO(T ; ε)→ sO(T ; 0).

2. Rescaling the time differently by setting τ = T/ε (see Section 3.3), we
get another (equivalent) set of equations from system (2) and (3):

dsI(τ; ε)

dτ
= εf1

[
sI(τ; ε), cI(τ; ε)

]
,

dcI(τ; ε)

dτ
= f2

[
sI(τ; ε), cI(τ; ε)

]
.

For ε → 0 , this ia a (regularly) perturbed system and one can show
that for bounded τ, cI(τ; ε) → cI(τ; 0) and sI(τ; ε) → sI(τ; 0) where
cI(τ; 0) and sI(τ, 0) solve

dsI(τ; 0)

dτ
= 0 ,

dcI(τ; 0)

dτ
= f2

[
sI(τ; 0), cI(τ; 0)

]
.

3. The outer and inner solutions are matched at the edge of the boundary
layer (see Section 3.4).

3.1 Scaling

For the two time periods we introduce two differently scaled dimensionless
times:

τ =
t

tc
for the transient period;
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T =
t

tS̄
for the post-transient period.

Likewise, the complex and total substrate concentrations are scaled by di-
viding them by their respective maxima:

c =
[C]

C0
; s =

¯[S]

S0
.

The maximum of [C], C0, is derived by Borghans et al. [2] as

C0 = E0S0/(E0 + S0 + κm).

3.2 Outer solution

Borghans et al. [2] found a necessary condition for the validity of the tqssa,
namely tc ≤ tS̄ , or alternatively, that 0 < ε ≤ 1 where

ε =
tc

tS̄
=

κ2E0

κ1 (E0 + S0 + κm)
2
.

This term is thus used as a small dimensionless parameter in the singular
perturbation analysis.

In the outer region, equation (3) is nondimensionalized with the scaled
variables c and T to give

dc

dT
=
1

C0
× κ1

[
E0S0s− (E0 + S0s+ κm)C0c+ (C0c)

2
]
× tS̄

=
1

ε

(
s−

E0 + S0s+ κm

E0 + S0 + κm
c+ γc2

)
,

(5)

with

γ =
E0S0

(S0 + κm + E0)2
,
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and initial condition c(0) = 0 . As ε→ 0 , equation (5) becomes the algebraic
equation

s−
E0 + S0s+ κm

E0 + S0 + κm
c+ γc2 = 0 .

By applying the approach discussed by Cha and Cha [5] or Padé ap-
proximation [1], an approximation cO (subscript ‘O’ here denotes the outer
solution) for c is obtained:

cO(T) =
E0 + S0 + κm

E0 + S0s+ κm
s . (6)

It turns out that the same approximation can also be derived from the tqssa.
Note that this solution does not satisfy the initial condition c(0) = 0 , and
is only valid in the quasi-steady state. We call this approximation an outer
solution. Substituting the dimensionless variables and (6) into equation (2)
gives

ds

dT
= −

E0 + S0 + κm

E0 + S0s+ κm
s , s(0) = 1 . (7)

Solving equation (7) gives the outer solution of s, sO, in the form

(E0 + κm) ln sO(T) + S0(sO(T) − 1) + (E0 + S0 + κm) T = 0 (8)

which is also the same as the solution obtained via tqssa.

3.3 Inner solution

Since the outer solutions do not satisfy the initial conditions, we presume
there is another set of early time solutions in an initial or pre-steady state
layer. Here the solutions are called inner solutions.

Consequently, a new rate equation is derived for the substrate concen-
tration upon substitution of the dimensionless variables s and τ into equa-
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tion (2):

ds

dτ
= −

κ2E0

κ1(E0 + S0 + κm)2
c , s(0) = 1 . (9)

One sees that as ε→ 0 , equation (9) becomes ds
dτ

= 0 and so s is approx-
imately constant throughout the pre-steady state. After imposing the initial
condition, the inner solution (represented by subscript ‘I’) in this region is

sI(τ) = s(0) = 1 . (10)

On the other hand, insert the scaled variables into equation (3) and re-
place s = 1 , the rate equation of complex is reformulated as

dc

dτ
= 1− c− γc2 , c(0) = 0 . (11)

Solving equation (11) gives the inner solution of complex concentration

cI(τ) =
2
[

exp (
√
4γ− 1τ) − 1

]
(1−

√
1− 4γ) exp (

√
4γ− 1τ) − (1+

√
1− 4γ)

which satisfies the actual biochemical phenomena, that is, no complex con-
centration appears at the beginning; in other words, the initial condition
c(0) = 0 holds by the inner solution.

3.4 Matching and uniform approximation

The inner solution, valid in the transient period, together with the outer
solution, valid in the post-transient period, comprise a total solution for the
system. These solutions have a common limit or overlap term, that is, where
the outer solution begins to take over from inner solution.
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Figure 1: The computed complex concentrations with E0 = 200 , S0 = 180 ,
κ1 = 0.001 , κ2 = 30 and κ−1 = 35 .



3 Singular perturbation analysis of tQSSA C438

Consider now ε→ 0 , τ→∞ and T → 0 respectively. The common limit
of the inner and outer solutions is defined as

lim
ε→0[yO(T)|T=0] = lim

ε→0[yI(τ)|τ=∞].

In other words, the inner and outer solutions are matched if in the limit of
ε→ 0 , the inner solution as τ→∞ is equal to the outer solution as T → 0 .

Lastly, the final solution, the so-called uniform approximation is obtained
by adding the inner and outer solutions and subtracting their common part.

Now, let us apply the matching condition to the outer and inner solutions
of the substrate concentration, that is, to equations (8) and (10). We have

lim
ε→0[sO(T)|T=0] = lim

ε→0[sI(τ)|τ=∞] = 1 .

On the other hand, checking the limit of the outer and inner solutions of
the complex gives

lim
ε→0[cO(T)|T=0] = lim

ε→0[cI(τ)|τ=∞] ≈ 2
(
1+

√
1− 4γ

)−1

.

The uniform approximations for s and c are eventually derived as

su = sO + sI − 1 = sO , (12)

cu = cO + cI − 2
(
1+

√
1− 4γ

)−1

. (13)

Through equation (12), we find that the approximations obtained via
tqssa and its singular perturbation procedures are exactly the same, thus
tqssa is considered as a reasonable approximation to the substrate concentra-
tion. On the other hand, the singular perturbation analysis has successfully
corrected the defect of tqssa; that is, the initial condition is satisfied by
introducing the inner solution, cI (refer Figure 1).
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Figure 2: Expected value of total substrate computed with xe0
= 200 ,

xs0 = 180 , κ1 = 0.001 , κ2 = 30 and κ−1 = 35 , via two approaches: full
system of cme and the reduced system, namely the cme in conjunction with
tqssa.

4 Applying the tQSSA to the chemical

master equation

In molecular biology, stochasticity is an important driver. Here, we con-
sider the Michaelis–Menten mechanism in reaction (1) where we initially
have xe0

copies of enzyme, xs0 copies of the total substrate and zero copies
of complex and product. The probability of a state X = (xc, xS) at time t
is denoted by Pr(xc, xS; t) and is governed by the chemical master equation
(cme):

dPr(X; t)

dt
=

3∑
i=1

αi(X− zi) Pr(X− zi; t) − αi(X, t) Pr(X; t). (14)
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Figure 3: The conditional expectation of the complex level, E[xc | xS̄], ob-
tained through equations (15) and (16).

Here, αi is the ith reaction’s propensity: α1 = κ1(xe0
−xc)(xS̄−xc), α2 = κ2xc

and α3 = κ−1xc . Furthermore, zi is the ith reaction’s stoichiometric vector:
z1 = [1, 0]T , z2 = [−1,−1]T and z3 = [−1, 0]T .

According to Goutsias [6], the conditional probability Pr(xc | xS̄; t) ap-
proximately solves

dPr(xc | xS̄; t)

dt
= −(κ1(xe0

− xc)(xS̄ − xc) + (κ−1 + κ2)xc) Pr(xc | xS̄; t)

+ κ1(xe0
− xc + 1)(xS̄ − xc + 1) Pr(xc − 1 | xS̄; t)

+ (κ−1 + κ2)(xc + 1) Pr(xc + 1 | xS̄; t).

(15)

Recall that the tqssa leads to the dae system (4), and, in particular, a
constant cO for any given sO. Following an idea of Cao et al. [4], this suggests
that for a given xS̄ the conditional probability Pr(xc | xS̄) is stationary, that
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Table 1: Comparison of the computations of the full and reduced systems.
Limiting factor, xs0 90 120 150 180

Computation time for full system (s) 392 609 1261 2430
Computation time for reduced system (s) 5.0 5.9 7.3 8.4
Ratio 78 103 173 289
Percent relative error of E[xS̄] (%) 0.14 0.14 0.14 0.14

is
dPr(xc | xS̄; t)

dt
= 0 . (16)

It follows that Pr(xc | xS̄; t) can be found by solving the homogeneous system
obtained by replacing the left hand side of equation (15) by zero.

On the other hand, summing the cme (14) over xc and replacing Pr(xc, xS̄; t)
by Pr(xc | xS̄) Pr(xS̄; t) in the cme gives

dPr(xS̄; t)

dt
= κ2E[xc | xS̄ + 1] Pr(xS̄ + 1; t) − κ2E[xc | xS̄] Pr(xS̄; t). (17)

Note that once Pr(xc | xS̄; t) and, hence, E[xc | xS̄] have been determined, the
cme (17) is of lower dimension than the original cme (14).

5 Discussion

We revisited the tqssa for simple enzymatic reactions and derived the re-
duced equations using a perturbation ansatz. While we mainly do this for
the deterministic case we also derive a model for the stochastic case.

The application of the reduced system obtained using this approach,
equations (16) and (17), leads to substantial computational savings, and
the results obtained match favorably with the results of the full system, by
equation (14), see Figures 2 and 3 and Table 1. Since xs0 is the limiting
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factor [3] of the system, the sizes of the propensity matrices of full and re-
duced systems are x2s0 × x

2
s0

and xs0 × xs0 respectively. Our computations
(see Table 1), shown that the computation time grows exponentially for the
full system but linearly for the reduced system. The relative error computed
for the expected value of the total substrate turns out to be around 10−3.
The justification of the application of tqssa to the cme will be discussed in
future work.
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