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A far-field based T-matrix method for three
dimensional acoustic scattering
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Abstract

The acoustic scattering properties of an obstacle are completely
described by its infinite acoustic T-matrix. The T-matrix is particu-
larly useful when one is interested in analysing changes in sound wave
propagation with respect to various changes in orientation or configu-
ration of single or multiple scatterers. This is because the T-matrix is
independent of the incoming wave directions and hence can be used to
easily simulate the scattered sound waves, without the need to fully
set up and solve each reconfigured system. However, in practice one
must use the truncated finite dimensional T-matrix, which is usually
computed using the null field method. For acoustically large obstacles
or highly non-spherical particles the null field method is numerically
unstable. In this work we describe an efficient and stable method for
computing the truncated T-matrix using a surface integral equation
reformulation and a high order acoustic surface scattering algorithm.
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1 Introduction

Acoustic scattering simulations using the T-matrix method, exterior to a ball
circumscribing and centred inside the non-spherical scattering object, are
based on series expansions of the incident and scattered fields using spherical
wave functions. In sound wave propagation simulations the coefficients in
the expansion of the input data (incident field) and the coefficients in the
expansion of the output data (the scattered far-fields—processed through
the Helmholtz operator) are connected by an infinite matrix, because the
Helmholtz equation is linear. This transition matrix is called the T-matrix [2,
5, 6, 7]. The acoustic scattering properties of an obstacle are completely
described by its infinite acoustic T-matrix.

The T-matrix is a powerful tool when one is interested in scattering prop-
erties averaged over a range of incident directions because such information
is readily obtained directly from the T-matrix. The T-matrix is also very
useful for simulations of multiple scattering by ensembles of obstacles be-
cause the individual T-matrices of each scatterer can be combined using the
translation-addition theorem [5, 6].

Waterman [9] intially developed the T-matrix for electromagnetic scatter-
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ing by a single scatterer; it was extended to multiple scatterers by Peterson
and Ström [8]. The truncated T-matrix is usually computed using the null
field (also known as the extended boundary condition) method [2, 4, 5, 9, 7].

For medium to high frequency problems or highly non-spherical obstacles
the null field method is numerically unstable. This is largely due to fast
growth of the spherical Hankel functions used in expansions of the surface
field in the null field method [5]. For acoustically large or highly non-spherical
obstacles the T-matrix computations can become divergent [7, p. 543]. There
are several approaches to tackle this problem [5, 6, 7] such as using expan-
sions based on spheroidal or ellipsoidal functions for high-aspect ratio convex
obstacles, and using slow extended precision arithmetic to minimise the effect
of round-off errors.

The T-matrix could be computed using far field simulations based on
surface integral equations for incident spherical waves, but to date no al-
gorithms of this type have been developed for acoustic scattering in three
dimensions [5, §7.9.4]. Many good algorithms exist for far field computa-
tions and such details are described by Ganesh and Graham [3]. This article
focusses on the details required to compute the T-matrix by efficiently using
these algorithms. In particular, we present details of an efficient fast sta-
ble scheme to compute the T-matrix entries. We assume that numerical far
field patterns can be computed as necessary but we do not consider how to
perform these far field computations here.

The fundamental computational difficulty in computing the T-matrix us-
ing a stable far field surface integral method is that this approach requires
solving a large number of complex dense linear systems with a fixed scat-
tering matrix (obtained by discretising the associated surface integral opera-
tor) but thousands of right hand sides (corresponding to each wave function
used in expanding the incident field). Consequently, using a computational
scattering algorithm that allows set up, storage, and lu-factorisation of the
numerical scattering matrix is crucial. lu-factorisation is not practically pos-
sible for three dimensional scattering problems using low order schemes such
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as the standard boundary element methods, that usually require hundreds
of thousands to millions of unknowns for low to medium frequency scatter-
ing for each incident direction. Such large systems require iterative solvers
to avoid setting up and storing the scattering matrix and hence thousands
of acoustic scattering problems are to be set up and solved for each term
in the incident wave expansions separately. Ganesh and Graham [3] give
computational complexity and cpu time requirements for three dimensional
scattering problems.

Ganesh and Graham [3] describe a spectrally accurate three dimensional
scattering algorithm that requires fewer than 10% of the unknowns than
several established algorithms and hence is ideal for acoustic T-matrix com-
putations, solving for thousands of terms in the incident field expansions
using simple back and forward substitution techniques after storage of the
lu-factorisation of the numerical scattering matrix, which is only computed
once.

In this work we present a novel algorithm that uses numerically computed
far field data to compute the acoustic T-matrix. We use the algorithm of
Ganesh and Graham [3] to compute the far field data. In the next two sections
we develop all of the details required for the T-matrix computations. Sec-
tion 4 computationally demonstrates the high order accuracy of our acoustic
T-matrix computations using several non-spherical obstacles with acoustic
size ka ≈ 100 , where k is the wavenumber of the incident wave and a is the
physical diameter of the scatterer.

2 Expansions of the acoustic field

The time-harmonic radiating acoustic velocity field u scattered by an impen-
etrable three dimensional scatterer D in a homogeneous medium satisfies the
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Helmholtz equation

∆u(x) + k2u(x) = 0 , x ∈ R3 \ D̄ , (1)

where k = 2π/λ is the wavenumber and λ the wavelength, and the Sommer-
feld radiation condition

lim
|x|→∞ |x|

(
∂u

∂x
− iku

)
= 0 , (2)

where the limit holds uniformly in all directions x̂ = x/|x|. The scattered
field u is induced by the incident field ui with wavenumber k and in this work
we assume that the obstacle is sound-soft, leading to the Dirichlet boundary
condition

u(x) = −ui(x) , x ∈ ∂D . (3)

Extension of the algorithm to sound-hard and absorbing obstacles (that is,
Neumann or mixed boundary conditions) is straightforward.

The T-matrix method is based on expansion of the incident and scattered
fields in terms of spherical wavefunctions. In particular, the basic tool for
expansions are the regular spherical wavefunctions

ẽlj(x) = jl(k|x|)Ylj(x̂) , x̂ =
x

|x|
, (4)

and radiating spherical wavefunctions

elj(x) = h
(1)
l (k|x|)Ylj(x̂) , x̂ =

x

|x|
, (5)

where jl is the spherical Bessel function of degree l, h
(1)
l is the spherical

Hankel function of degree l, and Ylj is the spherical harmonic of degree l:

Ylj(x̂) = (−1)(j+|j|)/2

√
2l+ 1

4π

(l− |j|)!

(l+ |j|)!
P

|j|
l (cos θ)eijφ , (6)
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for l = 0, . . . ,∞ , |j| ≤ l , where P
|j|
l is an associated Legendre function. Here

we use the spherical polar coordinates representation of the unit vector x̂

with polar angle θ and azimuth φ. The spherical wavefunctions satisfy the
Helmholtz equation (1). The radiating spherical wavefunctions additionally
satisfy the radiation condition (2), which is an important constraint on the
scattered acoustic fields that guarantees their outgoing nature.

We expand the given incident field as

ui(x) =

∞∑
l=0

∑
|j|≤l

pljẽlj(x) , (7)

with coefficients plj, which are given analytically when ui is a plane wave.
The T-matrix technique assumes a similar expansion of the outgoing scat-
tered exterior wave field:

u(x) =

∞∑
l=0

∑
|j|≤l

aljelj(x) . (8)

Since the Helmholtz equation (1) (which connects the incident and scattered
fields) is linear, there exist coefficients tl ′j ′,l,j such that

al ′j ′ =

∞∑
l=0

∑
|j|≤l

tl ′j ′,ljplj .

Writing a = (alj) and p = (plj), we have

a = Tp (9)

where T = (tl ′j ′,lj) is called the transition- or T-matrix.
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3 Far field based T-matrix computation

A given radiating acoustic field u has far field u∞ and acoustic cross sec-
tion εdB (measured in decibels), defined by

u∞(x̂) = lim
|x|→∞ |x|e−ik|x|u(x) , εdB(x̂) = 10 log10 4π|u∞(x̂)|2 , x̂ =

x

|x|
,

(10)
which describes the asymptotic behaviour of the exterior field at large dis-
tances from the scatterer. This section describes an efficient computational
scheme for computing the T-matrix of D using the far fields of the radiating
spherical wavefunctions.

The scattered field u is induced by the incident field through the boundary
condition (3). Applying the operator that maps incident fields to scattered
fields in the representation (7) for the incident field we get

u =

∞∑
l=0

∑
|j|≤l

pljulj (11)

where ulj denotes the scattered field induced by ẽlj. Each ulj is a radiating
solution of (1) and so has an expansion in the radiating spherical wavefunc-
tions,

ulj =

∞∑
l ′=0

∑
|j ′|≤l ′

tl ′j ′,ljel ′j ′ , l = 0, . . . ,∞ , |j| ≤ l , (12)

for some coefficients tl ′j ′,lj.

From the asymptotics [1] of the spherical Hankel functions h
(1)
l , the far

field e∞
l ′j ′ of the radiating spherical wavefunction el ′j ′ is

e∞
l ′j ′(x̂) =

1

k
(−i)l

′+1Yl ′,j ′(x̂) . (13)
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Using (13) and (12) we derive the far field u∞
lj of ulj

u∞
lj =

∞∑
l ′=0

∑
|j ′|≤l ′

tl ′j ′,lj
1

k
(−i)l

′+1Yl ′,j ′(x̂) . (14)

Using the orthogonality of the spherical harmonics (6) we pick out the T-
matrix entries from a numerically computed approximation to u∞

lj using the
inner product

tl ′j ′,lj = 〈u∞
lj , Yl ′j ′〉 (15)

where 〈·, ·〉 is the usual inner product on the unit sphere.

For practical computations the infinite T-matrix must be truncated, so
that we restrict to wavefunctions of order l, l ′ = 0, . . . , nt in all expansions.
That is, we replace the symbol ∞ in all of the above infinite sums with a
parameter nt. In practice we evaluate the inner product (15) using a Gauss–
Legendre quadrature scheme [3] of order 2(nt + 1)× (nt + 1),∫

∂B

f(x̂)ds(x̂) ≈
2nt+2∑
r=1

nt∑
s=0

µsνrf(x̂rs) (16)

where in spherical polar coordinates x̂rs = x̂(θr, φs) and νs and µr are
quadrature weights. This quadrature scheme converges super-algebraically
for smooth functions on the sphere such as those in (15).

The tensor product nature of the quadrature rule (16) allows us to take
advantage of the separable nature of the spherical harmonics in the compu-
tations. For each l, j we first precompute the array

Bsj ′,lj =

2nt+2∑
r=1

µru
∞
lj (x̂rs)e

−ij ′φr ,

and then compute

tl ′j ′,lj =

nt∑
s=0

νsc
l ′

j ′P
|j ′|
l ′ (cos θs)Bsj ′,lj
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where cl
′

j ′ is the normalisation coefficient in (6). This reduces the complexity

of computing the T-matrix from O(n6t) to O(n5t). We further reduce the
complexity by using the fft to compute Bsj ′,lj.

To compute the T-matrix we must perform one far field computation to
compute an approximation to the far field u∞

lj for each incident wavefunc-
tion ẽlj, l = 0, . . . , nt , |j| ≤ l . For the numerical experiments in Section 4
we use the surface integral equation algorithm of Ganesh and Graham [3]
because the high order basis used leads to small linear systems that we solve
very efficiently using lu-factorisation, even for many right-hand sides induced
by the many incident wavefunctions.

4 Numerical experiments

We demonstrate the convergence and accuracy of our algorithm by measur-
ing symmetry properties of our computed truncated T-matrix for a range
of convex and non-convex perfect conductors at low to medium frequencies.
Figures 1–4 visually demonstrate the algorithm with exterior field and acous-
tic cross section computations, using our computed T-matrix.

The exact infinite T-matrix satisfies [5, Equation (7.67), p. 269]

0 = σl ′j ′,lj := tl ′j ′,lj + tlj,l ′j ′ + 2

∞∑
l̂=0

∑
|̂|≤l̂

tl̂̂,l ′j ′tl̂̂,lj . (17)

This condition, with the summation appropriately truncated, is a standard
measure of the quality of a numerically computed T-matrix [5, p. 269]. In
this work we replace the infinite sum in (17) with

∑nt

l̂=0

∑
|̂|≤l̂ and use

σ := max
l=0,...,nt

max
|j|≤l

max
l ′=0,...,nt

max
|j ′|≤l ′

|σl ′j ′,lj| (18)



4 Numerical experiments C130

Figure 1: Intensity of the exterior field (|<(u)|) and detection of radiation
free (shadow) region behind the bean shaped obstacle of acoustic size ka =

100.5310 computed using the T-matrix with n = 95 and nt = 75 .



4 Numerical experiments C131

Figure 2: Intensity of the exterior field (|<(u)|) and detection of radiation
free (shadow) region behind the fountain shaped obstacle of acoustic size
ka = 100.5310 computed using the T-matrix with n = 110 and nt = 75 .
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Figure 3: Bistatic acoustic cross section for a non-convex bean shaped
obstacle of acoustic size ka = 100.5310 computed using the T-matrix with
n = 95 and nt = 75 .

Figure 4: Bistatic acoustic cross section for a non-convex fountain shaped
obstacle of acoustic size ka = 100.5310 computed using the T-matrix with
n = 110 and nt = 75 .
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Figure 5: Non-convex peanut, bean and fountain shaped scatterers.

Table 1: Accuracy of T-matrix, measured by convergence of σ in (18) to
zero, for scattering by a peanut shaped obstacle with ka = 100.5310 .

nt n = 125 n = 130 n = 135

65 5.7e-07 5.8e-07 5.8e-07
70 2.8e-08 5.0e-09 4.8e-09
75 2.8e-08 1.3e-09 5.1e-11

as a measure of the error in our truncated T-matrix. A nice feature of σ is
that it measures errors due to truncation of the T-matrix as well as errors in
the computation of the T-matrix entries.

In our numerical experiments we compute the far field using Ganesh and
Graham’s algorithm [3], which has spectral convergence with respect to the
degree n of the approximating polynomials. In particular, for the algorithm,
the size of the scattering matrix is N×N, where N = (n+ 1)2. For a given
scatterer and incident wavenumber, the n required depends on the acoustic
size ka and the shape of the scatterer. Ganesh and Graham [3] give full
details for the choice of n. The shapes of some of the non-spherical obstacles
considered in our experiments are shown in Figure 5. For these non-convex
obstacles, as demonstrated in Tables 1–3 with ka ≈ 100 , it is sufficient
for n to be at most 135, leading to scattering matrices of dimension less
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Table 2: Accuracy of T-matrix, measured by convergence of σ in (18) to
zero, for scattering by a bean shaped obstacle with ka = 100.5310 .

nt n = 85 n = 90 n = 95

65 7.3e-05 7.3e-05 7.3e-05
70 1.6e-06 1.5e-06 1.5e-06
75 1.6e-06 1.2e-07 2.0e-08

Table 3: Accuracy of T-matrix, measured by convergence of σ in (18) to
zero, for scattering by a fountain shaped obstacle with ka = 100.5310 .

nt n = 100 n = 105 n = 110

65 2.8e-06 2.8e-06 2.8e-06
70 2.3e-08 2.3e-08 2.3e-08
75 3.3e-09 2.4e-10 1.3e-10

than 18, 500. Such small systems allow us to solve using the lu-factorisation
(in serial or parallel) for many right hand sides at very little extra cost.

We demonstrate the convergence of σ in (18) to zero with respect to the
parameters nt and n. For spherical scatterers with radius r = a/2 , the
T-matrix is diagonal and the entries correspond to the well known series
solution of the acoustic scattering problem. The nt required to obtain a
good solution in this case is approximately nt = kr+ 4(kr)1/3 [10].

Our experimental results in Tables 1–3 suggest that for non-spherical
scatterers slightly higher nt is required than for spherical scatterers to ob-
tain σ between 10−8 to 10−10. The results reported here are typical of the
results obtained with our algorithm for a wide range of problems at low to
medium frequency, with several non-spherical obstacles.
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