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Abstract

The gmres method is an iterative method that provides better so-
lutions when dealing with large linear systems of equations with a non-
symmetric coefficient matrix. The gmres method generates a Krylov
subspace for the solution, and the augmented gmres method allows
augmentation of the Krylov subspaces by a user supplied subspace
which represents certain known features of the desired solution. The
augmented gmres method performs well with suitable augmentation,
but performs poorly with unsuitable augmentation. The adaptive aug-
mented gmres method automatically selects a suitable subspace from
a set of candidates supplied by the user. This study shows that this
method maintains the performance level of augmented gmres and
lightens the burden it puts on its users. Numerical experiments com-
pare robustness as well as the efficiency of various heuristic strategies.

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/1444
gives this article, c© Austral. Mathematical Soc. 2009. Published January 7, 2009. issn
1446-8735. (Print two pages per sheet of paper.)

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/1444


Contents C655

Contents

1 Introduction C655

2 Iterative methods for solving linear discrete ill-posed prob-
lems C656

3 Adaptive augmented GMRES and RRGMRES method C658

4 Numerical experiments C660
4.1 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . C662
4.2 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . C664

5 Conclusion C666

References C666

1 Introduction

This article explores iterative methods for solving large linear systems of
equations,

Ax = b , A ∈ Rn×n, x,b ∈ Rn, (1)

which have a coefficient matrix A of ill-determined rank. That is, matrix A
has many singular values of different orders of magnitude close to the origin.
In particular, A is severely ill-conditioned. Some of the singular values of A
may be vanishing.

When linear ill-posed problems such as the first kind Fredholm integral
equations are discretized it results in a linear system of equations like (1) with
a coefficient matrix of ill-determined rank. These arise in many inverse prob-
lems; for example, in computations of the magnetization inside a volcano,
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and in computations of sharp images from blurred ones. In this study, the
linear systems of equations with a matrix of ill-determined rank are referred
to as linear discrete ill-posed problems and are based on that developed by
Hansen [7].

In many linear discrete ill-posed problems, the right-hand side b is con-
taminated by a measurement and discretization error e ∈ Rn, that is,

b = b̂ + e , (2)

where b̂ ∈ Rn is an unknown error-free vector. Assume that the linear system
of equations has an unknown error-free right-hand side where,

Ax̂ = b̂ , (3)

is consistent. The available linear system (1) does not have to be consistent.

When obtaining a solution x̂ of equation (3), for instance, the least-
squares solution of the minimal Euclidean norm, the right-hand side b̂ of
equation (3) is unknown. It becomes necessary to determine an approxima-
tion of x̂ by computing a jth iterate solution xj of the available linear system
of equations (1). The final approximate solution x∗j is determined by

‖x∗j − x̂‖ = min ‖xj − x̂‖, (4)

where ‖ · ‖ denotes the Euclidean norm.

2 Iterative methods for solving linear

discrete ill-posed problems

Recently, iterative methods for creating an approximate solution for large
scale linear discrete ill-posed problems like (1) have received a lot of attention.
Calvetti et al. [4] explored this extensively.
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The gmres method by Saad and Schulz [8] is one of the popular iterative
methods for solving linear systems of equations (1) with a non-symmetric
matrix A.

Let x0 be an initial approximate solution of (1) and r0 = b −Ax0 be the
initial residual vector. The Krylov subspaces are

Kj(A, r0) = span{r0, Ar0, . . . , A
j−1r0}. (5)

The jth iterate xj satisfies

‖Axj − b‖ = min
x∈x0+Kj(A,r0)

‖Ax − b‖, (6)

and is an approximate solution.

The range restricted gmres (rrgmres) method by Calvetti et al. [3]
differs from the normal gmres method in that the Krylov subspace is re-
stricted to the range of the coefficient matrix A. To obtain an approximate
solution x we solve the least-squares problem

‖Axj − b‖ = min
x∈x0+Kj(A,Ar0)

‖Ax − b‖, (7)

where Kj(A,Ar0) = AKj(A, r0). Calvetti et al. [4] showed that rrgmres
works better than gmres when solving linear discrete ill-posed problems.

Baglama and Reichel [2] presented an augmented gmres method where
the approximate solution xj satisfies

‖Axj − b‖ = min
x∈x0+Kj(A,r0)+W

‖Ax − b‖, (8)

and an augmented rrgmres method

‖Axj − b‖ = min
x∈x0+Kj(A,Ar0)+W

‖Ax − b‖. (9)

These methods add a user supplied space W to the Krylov subspaces gen-
erated by normal gmres and rrgmres respectively. These methods create
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an approximate solution with augmented Krylov subspaces. Baglama [2] de-
scribes the details of user supplied spaces. This helps the Krylov subspaces
to represent features of the solution and to create an approximation which
is sufficiently accurate. Based on Baglama [2], we prepare the spaces for
augmentation as

W1 =


1

1
...
1

 , W2 =


1 1

1 2
...

...
1 n

 , W3 =


1 1 1

1 2 4
...

...
...

1 n n2

 , (10)

Wi = rangeWk , 1 6 i 6 3. (11)

An algorithm of the augmented gmres and rrgmres is shown by Baglama [2,
Algorithm 2.1]. In this article, the first x0 = 0, but the following x0 6= 0

when we restart.

The problem with these methods is that it is difficult to choose the best
space for augmentation. First of all, the choice of the space depends on the
features of the exact solution. Secondly, if we added an inadequate space, we
may achieve a less acceptable result than the normal gmres or rrgmres
methods. This means that if the features of the exact solution are not known,
it is a waste of time to use the augmented gmres and rrgmres methods.
As a solution for overcoming these issues, an adaptive augmented gmres
and rrgmres method, and a restarted version of them were developed.

3 Adaptive augmented GMRES and

RRGMRES method

This section explains how our adaptive augmented gmres and rrgmres
method are implemented.
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After preparing some spaces, the adaptive method automatically selects
the space that is augmented through certain selecting conditions, even if
the features of the exact solution are unknown. The user needs to define a
number of candidate spaces. Based on this, the adaptive algorithm chooses
the best spaces. Here is an example of how this works

The first step is to prepare some spaces Wi, 1 6 i 6 l , for augmentation
and apply the skinny QR-factorization [5]

AWi = Vpi
Ri , (12)

where Wi ∈ Rn×pi is the basis of Wi, the matrices Vpi
∈ Rn×pi and have

orthonormal columns v1, v2, . . . , vpi
, and Ri ∈ Rpi×pi is upper triangular.

The second step is to use the initial vector of the Modified Arnoldi’s
method for choosing the augmentation space, which determines our select-
ing condition. Gmres generates Krylov subspaces by Modified Arnoldi’s
method and creates an approximate solution. The final residual norm of this
approximate solution is minimal. Thus, the smaller the norm of the initial
vector of Modified Arnoldi’s method, the smaller the final residual norm is.

We then calculate the norm of the initial vector of Modified Arnoldi’s
method utilising the augmented gmres

‖(I− Vpi
VTpi

)r0‖,

for each of the l spaces. After this, the magnitudes and the initial residual r0
that we use if we augment no space, are compared. If the space Wi is the
minimum norm, we augment with Wi and set it so that p = pi. If the norm
of initial residual r0 is the minimum, normal gmres is implemented.

At this point, we introduce another least-squares problem by modification
of (8). We chose the space W for augmentation in the second step, so we
execute the modified Arnoldi’s method. From this, we obtain

A[WiVp+1:p+j] = Vp+j+1H , (13)
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where Vp+j+1 = [VpVp+1:p+j+1] ∈ Rn×(p+j+1) has orthonormal columns v1,
v2, . . . , vp, and the first column of submatrix Vp+1:p+j+1 is (I−VpV

T
p )b/‖(I−

VpV
T
p )b‖ for adaptive augmented gmres and (I−VpV

T
p )Ab/‖(I−VpVTp )Ab‖

for the adaptive augmented rrgmres. The modified Arnoldi process de-
termines the remaining columns of Vp+1:p+j+1. H is the upper Hessenberg
matrix, and its p× p principal submatrix is R in the QR-factorization (12).

Since for all x ∈ x0 + Kj(A, r0) + W is represented as

x = x0 + [WVp+1:p+j+1]y , y ∈ Rn, (14)

we translate residual norms by using this Arnoldi decomposition (13):

‖b −Ax‖ = ‖b −A(x0 + [WVp+1:p+j+1]y)‖
= ‖r0 − Vp+j+1Hy‖
= ‖VTp+j+1r0 −Hy‖.

The iterate xj is determined as

xj = x0 + [WVp+1:p+j+1]yj , (15)

where the vector yj solves the least-squares problem

min
y∈Rp+j

‖VTp+j+1r0 −Hy‖. (16)

When restarting the adaptive algorithm, it is necessary to reset the initial
guess x0 to be the obtained approximate solution xj and start by selecting
the space for augmenting. In this article the restarted method is referred to
as the adaptive augmented gmres(j) and rrgmres(j) method.

4 Numerical experiments

The purpose of this section is to illustrate the performance of the adaptive
augmented gmres and rrgmres method for providing solutions to ill-posed
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Algorithm 1 Adaptive augmented gmres and rrgmres method.

Input: x0, A ∈ Rn×n,b ∈ Rn,Wi ∈ Rn×pi , 1 6 i 6 l, j

Output: xj

r0 := b −Ax0, vp+1 := r0
if rrgmres then

vp+1 := Ar0
end if
for i = 1, . . . , l do
AWi = Vpi

Hi
vpi+1 := (I− Vpi

VTpi
)vp+1

end for
m := arg min1≤i≤`‖vpl+1‖
if ‖vpl+1‖ < ‖vp+1‖ then
p := pm
vp+1 := vpm+1

Vp := vpm

else
p = 0

Vp := matrix with no columns
end if
for k = p+ 1, . . . , p+ j do

wk := Avk
for i = 1, . . . , k do
hik := (wk, vi)

wk := wk − hikvi
end for
hk+1,k := ‖wk‖
vk+1 := wk+1/hk+1,k, Vk+1 := [Vkvk+1]

end for
Compute: yj of miny∈Rp+j ‖VTp+j+1b −Hy‖
xj := x0 + [WVp+1:p+j]yj
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problems, particularly linear discrete ill-posed problems in numerical exper-
iments.

We run restarted algorithms on C using a hp Compaq ProLiant DL145
machine with εM = 2.22× 10−16. The maximum iteration is set at 100.

4.1 Experiment 1

The first experiment focuses on the Fredholm integral equation of the first
kind ∫ 1

0

K(s, t)x(t)dt = es + (1− e)s− 1 , 0 6 s 6 1 , (17)

K(s, t) =

{
s(t− 1), s < t ,

t(s− 1), s > t ,
(18)

where the solution x(t) = exp(t). We discretize the equation using the
Matlab program deriv2 from test functions in the Regularization Tools [6].
Then we obtain a symmetric matrix A ∈ R200×200 and x̂ ∈ R200. The error
vector is set to e ∈ R200. This would consist of normally distributed random
entries of zero mean and variance 1/2002. ‖e‖ = 3.56× 10−4. Set it so that
b̂ = Ax̂, and the right-hand side b = b̂ + e in (1).

Since the rrgmres method works better than the gmres method, we
compare adaptive augmented rrgmres (5), augmented rrgmres (5) aug-
mented by W3, which is the best space for augmentation, and standard
rrgmres (5).

Table 1 and Figure 1(a) show that the results of the adaptive method
is almost equal to that of the normal augmented method and better than
standard rrgmres. In Figure 1(b), adaptive augmented rrgmres(5) and
augmented rrgmres(5) with W3 approximate the exact solution well.
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Figure 1: Experiment 1
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Table 1: Experiment 1
Method Iteration ‖x∗j − x̂‖
rrgmres(5) 100 4.59× 10−1

Augmented rrgmres(5) with W3 1 9.55× 10−3

Adaptive Augmented rrgmres(5) 1 9.57× 10−3

4.2 Experiment 2

The second experiment has to do with a Fredholm integral equation of the
first kind by Baart [1]:∫π

0

exp [s cos (t)]x(t)dt = b(s) = 2
sinh (s)

s
, 0 6 s 6

π

2
, (19)

The solution is x(t) = sin(t). It is discretized using the Matlab program
baart from test functions in the Regularization Tools [6], after which a non-
symmetric coefficient matrix A ∈ R1000×1000 and x̂ ∈ R1000 are obtained. An
error vector e ∈ R1000 consisting of normally distributed random entries of
zero mean and variance 1/10002, and ‖e‖ = 3.04 × 10−5 were determined.
Here, b̂ = Ax̂, and the right-hand side b = b̂ + e in equation (1).

Since the performance of the rrgmres method is better than gmres, we
make a comparison using the same methods as Experiment 1.

Figure 2(a) indicates that our adaptive method performs better than the
other methods. In Table 2, the error norm of adaptive augmented rrgm-
res(5) is about 1/10 that of augmented rrgmres with W3. Figure 2(b)
illustrates that the approximate solution of the adaptive augmented rrgm-
res(5) is closer to the exact solution than that of the augmented rrgmres(5)
with W3.
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Table 2: Experiment 2
method iteration ‖x∗j − x̂‖
rrgmres(5) 4 6.20× 10−1

Augmented rrgmres(5) with W3 6 5.90× 10−1

Adaptive augmented rrgmres(5) 12 3.09× 10−2

5 Conclusion

Exploring the adaptive augmented gmres and rrgmres method, we find
that the numerical experiments for linear discrete ill-posed problems in Sec-
tion 4 ensure that our adaptive augmented method maintains at the least
and even improves on the performance of the normal augmented method in
some cases.
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