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Abstract

The scaled boundary finite element method (sbfem), a novel semi-
analytical mathematical method, is modified to solve the water wave
interaction with an elliptic cylinder. By introducing a virtual circu-
lar cylinder surrounding the elliptic cylinder, the whole fluid domain
is divided into one unbounded subdomain and several bounded sub-
domains. The corresponding boundary value problems in bounded
and unbounded domains are solved by the sbfem semi-analytically.
Comparisons to the previous numerical solutions demonstrate excel-
lent computational accuracy and efficiency of the present sbfem ap-
proach, as well as the benefit of not suffering from the difficulties of
irregular frequency, which are often encountered by the boundary el-
ement method. The method can be extended to solve more complex
wave structure interaction problems resulting in direct engineering ap-
plications.
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1 Introduction

The interaction of water waves with a vertical cylinder has been studied ex-
tensively due to its scientific and engineering significance. However, reports
on the studies of the wave diffraction by a cylinder with elliptic cross-section
are relatively few. The analytical solution for this problem was first ob-
tained by Chen and Mei [3] via numerical evaluation of Mathieu functions.
Considering that the complete analytical solution is too complex and costly
for engineering applications, Williams [7] presented approximate methods for
calculation of the wave forces and moments on an elliptic cylinder. A number
of numerical studies of the wave and elliptic cylinder interaction have been
reported using boundary element method (bem) [1, 9] or infinite element
method (iem) [2].

Recently, a new semi-analytical method, namely the scaled boundary



1 Introduction C476

finite element method (sbfem) has been successfully applied to the soil-
structure interaction problem, combining the advantages of finite element
method (fem) and bem [8]. The method only discretises the body boundary
surface with finite elements, then transforms the governing partial differ-
ential equations to ordinary matrix differential equations which are solved
analytically. The method solves the problems of singularities more accu-
rately and the problems of unbounded domains more efficiently compared to
fem. Unlike bem, it does not require a fundamental solution and is free from
the irregular frequency difficulty. Fewer elements are needed to obtain very
accurate solution.

Only recently has the sbfem been applied to wave diffraction in which
the radiation condition at infinity is required to be satisfied by the scattered
waves. Li et al. [4] solved the problem of plane wave diffraction by a vertical
cylinder using sbfem. Similar to the approach of Wolf [8] in obtaining a
solution for soil-structure interaction, Li et al. [4] adopted a power series
in the form (

∑∞
m=0Cmξ̄

−m) . Since the solution obtained as asymptotic
expansions involves sums to infinity, for large values of ξ̄ the series approaches
the exact solution rapidly and only a few terms in the series need to be
computed. However, this is only the case at the cylinder boundary (ξ̄ =

kc , where k and c denote the wave number and the radius of the cylinder
respectively) for high frequency waves. For low frequency waves, the series
hardly converges to the exact solution.

In this article, water wave diffraction by a vertical elliptic cylinder is
solved by sbfem semi-analytically. By introducing a virtual circular cylinder
surrounding the elliptic cylinder, the sbfem model of Tao et al. [6] is modified
and extended to solve a cylinder with elliptic cross section. The fluid domain
is divided into an unbounded subdomain and four bounded subdomains. The
corresponding boundary value problems in bounded and unbounded domains
are all solved by the sbfem analytically in radial direction. Comparisons to
the previous numerical results demonstrate the excellent computation accu-
racy and efficiency of the present sbfem approach. Without suffering from
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Figure 1: A sketch of the diffraction problem.

the difficulties of irregular frequency and singularity problems, the present
model shows additional advantage over bem.

2 Theoretical consideration

Consider a monochromatic plane wave train propagating at an angle θ with
the positive x axis as shown in Figure 1. A fixed vertical elliptic cylinder
extends from the sea bottom to the free surface of the ocean along z axis.
The origin is placed at the centre of the cylinder on the mean surface level.

Tao et al. [6] showed that the solution process is significantly simplified
by choosing the Hankel function as a base function for wave diffraction by
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a circular cylinder. However, it is no longer valid for a cylinder with elliptic
cross section. In order to preserve the accuracy and efficiency of the sbfem
model and overcome convergence problems associated with the algebraic se-
ries base function, a virtual circular cylinder (Γc) surrounding the elliptic
cylinder with the same centre is introduced. The whole fluid region is then
divided into two regions, the interior region and the region outside of the
cylinder S0. The interior region is further divided into four subdomains, S1,
S2, S3 and S4. The following notation is adopted here: Φj = total veloc-
ity potential, ΦI0 = velocity potential of incident wave in S0, Φ

S
0 = velocity

potential of scattered wave in S0, k = wave number, ω = wave frequency,
h = water depth, A = amplitude of incident wave, a = the semiaxis on
x axis, b = the semiaxis on y axis, c = the radius of the virtual circular
cylinder, t = time, ρ = mass density of water, and g = gravitational accel-
eration. The subscripts j (j = 0, 1, 2, 3, 4) denote the physical parameters in
the solution subdomain Sj.

Using the water depth function Z(z) = coshk(z+ h)/ coshkh , to satisfy
the seabed boundary conditions, separate the time and spatial dependence
as Φj(x, y, z, t) = φj(x, y)Z(z)e−iωt. The diffraction problems in S0 and Sj
(j = 1, 2, 3, 4) are then governed by a Helmholtz equation with the boundary
condition at the virtual interface Γc and the radiation condition at infinity,
and the boundary conditions at the interface of the subdomains and body
boundary respectively in Table 1, where r is the radial axis, i =

√
−1 is

the imaginary unit, n denotes the normal to the boundary, “adj” in the
subscript denotes the physical quantities in the adjacent subdomain, and
comma in the subscript designates the partial derivative with respect to the
following subscript variable.

The linear incident plane waves are given [5] by the real part of

ΦI = −
igA

ω
Z(z)ei(kxx+kyy−ωt) , (1)

and the relationship of the incident, scattered and total velocity potentials
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Table 1: The governing equations and boundary conditions.
unbounded subdomain bounded subdomain

∇2φS0 + k2φS0 = 0 in S0 ∇2φj + k2φj = 0 in Sj
φS0 + φI0 = φadj on Γc φj = φadj on Γs
φS0,n + φI0,n = −φadj,n on Γc φj,n = −φadj,n on Γs
limkr→∞(kr)1/2

(
φS0,r − ikφS0

)
= 0 on Γ∞ φj,n = 0 on Γb

are
Φ0 = ΦI0 +ΦS0, φ0 = φI0 + φS0 . (2)

Table 1 constitutes two sets of the governing equation and boundary con-
ditions for the diffraction of plane waves by an elliptic cylinder with a virtual
surrounding circular cylinder, corresponding to boundary value problems in
four bounded subdomains and an unbounded subdomain respectively. The
boundary condition on the virtual interface is eliminated by matching the
unbounded subdomain solution and bounded subdomain solutions on Γc.

3 Scaled boundary finite element

transformation

In this section, φj and φS0 are both denoted as φ for brevity, and the region Sj
denoted as Ω. Define the velocity boundary as Γv , we have

φ,n = v̄n on Γv , (3)

where the overbar designates a prescribed value.

sbfem defines the domain Ω by scaling a single piecewise smooth curve S
relative to a scaling centre (x0, y0), which is chosen at the cylinder centre in
this case, see Figure 2(a). The circumferential coordinate s is anticlockwise
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Figure 2: (a) sbfem coordinate definition; (b) sbfem mesh and subdo-
mains.

along the curve S and the normalised radial coordinate ξ is a scaling factor,
defined as 1 at curve S and 0 at the scaling centre. The whole solution
domain Ω is in the range of ξ0 ≤ ξ ≤ ξ1 and s0 ≤ s ≤ s1 . The two straight
sections s = s0 and s = s1 are called side faces. They coincide, if the curve S
is closed. For bounded domain, ξ0 = 0 and ξ1 = 1 ; whereas, for unbounded
domain, ξ0 = 1 and ξ1 = ∞ . Therefore the Cartesian coordinates are
transformed to the scaled boundary coordinate ξ and s with the scaling
equations

x = x0 + ξxs(s) , y = y0 + ξys(s) . (4)

By employing sbfem, an approximate solution of φ is sought as

φA(ξ, s) = N(s)a(ξ) , (5)

where N(s) is the shape function and the vector a(ξ) is analogous to the
nodal values same as in fem. In one element, N = [N1, N2, . . . , Np] and a =

[a1, a2, . . . , ap]
T where p is the number of nodes in one element. The radial

function aj(ξ) represents the variation of the wave potential in the radial
axis ξ at each node j, and N(s) interpolates between the nodal potential
values in the circumferential axis s.
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By performing scaled boundary transformation as shown in detail by Tao
et al. [6], the following equations are obtained

q(ξ1) =

∫
S

N(s)T (v̄n(ξ1, s))ξ1 ds , (6)

q(ξ0) = −

∫
S

N(s)T (v̄n(ξ0, s))ξ0 ds , (7)

E0ξ
2a(ξ),ξξ + (E0 + ET1 − E1)ξa(ξ),ξ − E2a(ξ) + k2ξ2M0a(ξ) = ξFs(ξ) ,

(8)

where q(ξ) = E0ξa(ξ),ξ + ET1a(ξ) ,

E0 =

∫
S

B1(s)
TB1(s)|J|ds , E1 =

∫
S

B2(s)
TB1(s)|J|ds , (9)

E2 =

∫
S

B2(s)
TB2(s)|J|ds , M0 =

∫
S

N(s)TN(s)|J|ds , (10)

Fs(ξ) = N(s0)
T (−v̄n(ξ, s0))|J(s0)| + N(s1)

T (−v̄n(ξ, s1))|J(s1)| , (11)

B1(s) = b1(s)N(s) , B2(s) = b2(s)N(s),s , (12)

b1(s) =
1

|J|

[
ys(s),s

−xs(s),s

]
, b2(s) =

1

|J|

[
−ys(s)

xs(s)

]
, (13)

and |J| is the Jacobian at the boundary

|J| = xs(s)ys(s),s − ys(s)xs(s),s . (14)

Equation (8) is the so-called scaled boundary finite element equation
with the unknown variable a(ξ). By introducing the shape function, the
Helmholtz equation has been weakened in the circumferential direction, so
that the governing partial differential equation is transformed to an ordinary
matrix differential equation in radial direction. The rank of matrices E0,
E1, E2, M0 and vector a(ξ) is m (where m is the number of nodes in the
curve S). In the present study, the side faces are impermeable so that the flow
across the side faces is zero, leading the non-homogeneous term Fs(ξ) = 0 .
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Therefore, the final governing equation (8) is a homogeneous second order
ordinary differential equation in terms of a matrix of rank m.

Boundary conditions are weakened in the form of equations (6) and (7),
indicating the relationship between the integrated nodal flow on the boundary
and the velocity potentials of the nodes. For the wave diffraction problem
in the unbounded region, ξ0 = 1 on the boundary of virtual cylinder and
ξ1 = +∞ at infinity. For the boundary value problem in the bounded region,
ξ0 = 0 and ξ1 = 1 .

4 Solution procedure

4.1 Solution for unbounded subdomain S0

The solution for unbounded subdomain was obtained by Tao et al. [6] as

a0(ζ) =

m∑
j=1

cjHrj(ζ)Tj = TH(ζ)C , (15)

where ζ = kcξ and rj =
√
λj, λj are the eigenvalues of matrix E−1

0 E2,

Tj (T = [T1, . . . ,Tm]) are the eigenvectors of E−1
0 E2, cj are coefficients

(C = [c1, . . . , cm]T ), Hrj(ζ) are the Hankel functions of the first kind (H(ζ) =

diag[Hr1(ζ), . . . , Hrm(ζ)], where “diag” denotes a diagonal matrix with the
elements in the square brackets on the main diagonal).

The boundary condition on Γc can be written as

q0(kc) = kcE0THbhT
−1a0(kc) = −

[∫
S

N(s)TN(s)ds

]
v̄S0n , (16)

where Hbh = diag[Hr1(kc)
′/Hr1(kc), . . . , H

′
rm(kc)/Hrm(kc)] , and v̄S0n is the

vector of nodal normal velocity of scattered wave on Γc .
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4.2 Solution for bounded subdomain

Define

X(ξ) =

[
a(ξ)

q(ξ)

]
, (17)

equation (8) is then written as

ζX(ζ),ζ = −ZX(ζ) − ζ2MX(ζ) , (18)

where ζ = kaξ ,

M =
1

a2

[
0 0

M0 0

]
and Z =

[
E−1
0 ET1 −E−1

0

−E2 + E1E
−1
0 ET1 −E1E

−1
0

]
. (19)

According to Wolf [8], the Hamiltonian matrix Z consists of two groups
with opposite sign eigenvalues, Λ0 and −Λ0 . The real parts of eigenvalues
in Λ0 are all nonnegative. The eigenvalue problem is formulated as

ZJ = −JΛ . (20)

Similar to Wolf [8] and Li et al. [4], the analytical solution of equation (18)
is expressed as

X(ζ) = JR(ζ)ζΛζUD , (21)

where U is an upper-triangular matrix with zeros on the diagonal, D is a
coefficient vector, and

R(ζ) = I + ζ2R1 + ζ4R2 + · · ·+ ζ2kRk + · · · . (22)

Writing Y(ζ) = ζU and K(ζ) = JR(ζ), and partitioning all the matrices
into block matrix with m × m dimensions and block vector with m × 1
dimensions respectively, equation (21) becomes

X(ζ) =

[
K11 K12

K21 K22

] [
ζΛ0 0

0 ζ−Λ0

] [
Y11 Y12

0 Y22

] [
D1

D2

]
. (23)
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The value at ζ = 0 should be finite, thus D2 = 0 , and we have

q(ζ) = Q(ζ)A−1(ζ)a(ζ) , (24)

where A(ζ) = K11(ζ)ζ
Λ0Y11(ζ) and Q(ζ) = K21(ζ)ζ

Λ0Y11(ζ) .

Assembling the matrices in the five subdomains and noting the boundary
conditions in Table 1, the whole problem is solved.

5 Results and discussion

In this article, the interfaces of the subdomains are discretised with three
node quadratic elements. As shown in Figure 2(b),N1,N2,N3 andN4 denote
the elements number in one of the interfaces of the subdomains accordingly.
If the physical problem is symmetric (for example, incident wave angle θ =

0, π/2, π), only half of the subdomains need to be discretised.

Table 2 shows the elements numbers for the convergence test, where Ne
and N denote the number of elements on the elliptic cylinder and on all
boundaries respectively. For wave diffraction by a circular cylinder, Figure 3
displays that the wave run-ups converge to the analytical solution [5] very
quickly as the number of elements increases. Satisfactory numerical results
were obtained when merely four elements for ka = 1 and six elements for
ka = 3 on the structure boundary were used.

Figure 4 is a comparison of the real parts and the imaginary parts of wave
run-ups between the present sbfem and iem solutions obtained by Bettess
and Bettess [2], where ka = 4 , a/b = 2 , θ = 30◦. The iem solution was
obtained by two radial elements and 24 circumferential elements. Figure 4
shows that the results from mesh III with only 12 elements on the circumfer-
ence by sbfem agree well with the iem solution. This clearly demonstrates
the high efficiency of sbfem.
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Table 2: The elements numbers used in the convergence test
Mesh elements number symmetric nonsymmetric

N1 N2 N3 N4 Ne N Ne N

I 1 1 1 1 2 7 4 12
II 1 2 1 2 4 11 8 20
III 1 3 1 3 6 15 12 28
VI 1 4 2 4 8 20 16 38
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Figure 3: Wave run-ups on a circular cylinder (θ = 0 and c/a = 1.5).
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Figure 4: Wave run-ups (real and imaginary parts) on the elliptic cylinder.

Replacing the plane wave with a short crested wave as the incident wave in
equation (1), the same solution procedure solves short crested wave diffrac-
tion by an elliptic cylinder. Figure 5 is a comparison of the short crested
wave forces versus incident wave angle θ between the present sbfem and
bem solutions, where kxa = 0.8 , kya = 0.6 , ka = 1 , a/b = 2 . The bem
solution was calculated using 24 constant elements and the almost identi-
cal solution is obtained by the sbfem with even the coarsest mesh, that is,
N1 = N2 = N3 = N4 = 1 , a clear demonstration of the high efficiency
exhibited in the present sbfem.

It is noteworthy that the computation times (on a 2.66 GHz Pentium IV
pc and matlab 7.5) of the sbfem solutions are very small. For all the cases
presented in this article, accurate results are obtained in less than three
seconds, a clear demonstration that sbfem significantly outperforms any
current infinite element or boundary element method for similar problems.
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Figure 5: Short crested wave forces versus incident wave angle θ.

6 Conclusion

In this article, the semi-analytical scaled boundary finite element method is
further extended and successfully applied to solve the wave diffraction by
a vertical cylinder with an elliptic cross section. Excellent agreements be-
tween the present sbfem solutions and other numerical results are achieved
with very low computational cost, demonstrating significant computational
accuracy and efficiency—a distinct advantage of the present method for un-
bounded domain fluid structure interaction problems. This method also has
the benefit of not suffering from the difficulties of irregular frequency and
singularity, which are often encountered by bem. The method could be ex-
tended to solve more complex wave structure interaction problems with direct
engineering applications.
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