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Linear stability analysis of a counter rotating
vortex pair of unequal strength
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Abstract

An elliptic type instability of a counter rotating vortex pair of
unequal strength was numerically investigated with a linear stability
analysis method. The peak growth rates of the unstable modes were
predicted. The instability characteristics were found to differ from an
equal strength vortex pair, of either co-rotating or counter rotating
vortices. This investigation serves as a fundamental model to the flow
of two unequal strength vortices, which can be generated from the
ends of aerodynamic surfaces of an aircraft, such as wing tips and
ailerons. These results provide predictions of the vortex arrangements
likely to develop three dimensional instabilities, which is known to
promote the dissipation of the underlying vortex structure.
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1 Introduction

The instability of an equal circulation strength vortex pair (either co-rotating
or counter rotating) has been the subject of intense investigation in the
past [6, 7, 9, e.g.]; owing to its potential application in the aviation in-
dustry [15]. Generally, investigations have identified an elliptic instability to
be the mechanism driving the perturbation growth on the vortex pair [4].
The elliptic instability was first identified by Widnall & Sullivan [16] on a
vortex ring and was classified as a short wave instability, as distinct from
the Crow (or long wave) instability [2]. An analytical model for the short
wave instability was developed by Widnall et al. [17] for a vortex ring. They
also argued that an analogous instability mechanism can support the short-
wave instability on a vortex pair. The argument was supported by Moore
& Saffman [10] who concluded that providing a finite strain at the vortex
core was an essential condition to the growth of a short wave instability on a
straight vortex filament. The strain field itself deforms the (initially) circular
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vortex profile into an elliptic one. The underlying strain field was shown to
excite the resonance of two Kelvin modes [3] leading to the growth of the
elliptic instability.

The linear elliptic instabilities have been shown to lead to dramatic non-
linear instability interaction, which enhance the circulation mixing between
two vortices and reduce the vortex pair coherence. Such phenomena was
observed by Leweke, Williamson and Meunier [7, 9], and the instability was
suggested to be applicable for reducing the long life of aircraft wake vortices.

The instability of an unequal strength vortex pair has had significantly
less attention. This article addresses this issue by considering the linear
instability growth on a counter rotating, unequal strength (CRUS) vortex pair
when the circulation ratio is varied. The numerical approach is described in
Section 2 and investigation results presented in Section 3.

2 Numerical approach

The numerical approach begins with a two dimensional (2D) baseflow com-
putation (Section 2.1) followed by a linear stability analysis (Section 2.2) of
the 2D flows to the growth of three dimensional (3D) perturbations. A 2D
baseflow was first resolved toward a quasi-steady state [14] under the two
dimensional Navier—Stokes equations and the continuity equation

a+(u-vm = —Vp+vViy, (1)
V.u = 0. (2)

Here, u = (u(x,y,t),v(x,y,t)) is the velocity vector, p is the kinematic static
pressure scalar and v is the kinematic viscosity. The resolved 2D baseflow
was then analyzed with a linear stability analysis technique, described in
Section 2.2.
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FiGure 1: Left: Schematic diagram of a vortex pair with A = —0.51.
Right: Current mesh showing the superimposed vortex pair.

A spectral element method was applied to spatially discretize the domain
in this investigation. Time integration was handled by a third order accurate
backwards multi-step scheme. Sheard et al. [12] and So et al. [14] recently
employed this algorithm and provide many details.

2.1 Numerical model—baseflow computation

The vortex pair, as in Figure 1 (left), is described with spacing ratio ao/bo,
where ay and by are the initial values of the vortex radius and the vortex
center separation respectively; and a relative initial circulation strength ratio,
A =Ty /T, where Ty is the vortex initial circulation; and the positive and
negative indicate the circulation sign of each vortex. The Reynolds number
Re = T/v of the flow is defined based on the initial I);". Table 1 summarizes all
flow parameters. Each vortex initially has a Gaussian vortex profile, where
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TABLE 1: Parameter space of the baseflow computation
Re QAo ao/bo FS’ A
20000 1 025 3w €[-1,-0.1]

the axial vorticity Wy is defined in polar coordinates as

o _ 2
Waxial = _ze (r/a0) y (3)

where 1 is the radial coordinate. A Gaussian vortex has the advantage that
its profile remains invariant over time despite viscous effects. The vortex
size grows in time following a, = +/4vt+ a [1], where t is time. This
vortex profile has been employed in several past investigations [5, 6, e.g.].
Figure 1 (right) shows two superimposed Gaussian vortices in the current
domain with a size of 100ay x 100a, .

2.1.1 Grid resolution independence

The spatial accuracy of a spectral element method is dependent on the or-
der n of the Lagrangain polynomials employed on the grid. A grid resolution
study was performed to determine sufficient resolution during the baseflow
computation with a CRUS vortex pair of A = —0.5 and ap/by = 0.25 at
Re = 20000. Polynomials of n = 10 were consequentially chosen to apply in
all simulations in the investigation, which provided the strain rate and the
vorticity measurements at the vortex center with less than 0.05% deviation
from the highest resolution study, n = 12. A time step of At = 0.001 was
found to be stable for all simulations.



2 Numerical approach C142

0.1

0.05

Ag

0 "’.\-‘-‘n---u‘--—n
v

; . 1 .
0.050 0.5 1
t

FI1GURE 2: Left: Rate of change of ¢ for a A = —0.51 vortex pair over one pe-
riod of self-rotation. Middle: Initial superimposed vortices. Right: Adapted
vortices at t* & 1. Flooded contours of normalized axial vorticity are plotted.
Red and blue contours show positive and negative vorticity respectively.

2.1.2 Adaptation of the vortices

Two superimposed Gaussian vortices are not a solution of the Navier—Stokes
equations. The vortices have to adapt to the mutually induced strain and
such an adaptation process has been shown to be a 2D inviscid process for
equal strength vortex pairs [8]. The 2D flow computation of the vortex pair
was resolved with (1) and (2) toward a quasi-steady solution, which satisfies
the Navier—Stokes equations. So et al. [14] found that a longer adaptation
time was required for the weaker vortex of a CRUS vortex pair.

In the current study, the eccentricity of each vortex was monitored dur-
ing the adaptation. The eccentricity € measures how much a vortex has de-
formed within an external strain field. Here, the eccentricity ¢ = 2S5{/Waxial
following the work of Le Dizés & Verga [8], where S; is the internal strain
rate, due to the strain imposed by the profile of the deformed vortex on
itself. Figure 2 (left) shows the variation of Ae over time for the case of
A = —0.51; the form of this plot is typical of that found across all values
of A considered. Figure 2 (middle & right) shows contours of vorticity both
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prior to the adaptation (t* = 0) and after the adaptation (t* ~ 1), where
t* =1t/T = t(I'" 4+ ') /47?b2. The simulation was carried out at Re = 6600
to show the viscous growth in the vortex radii with ~ 30%.

2.2 Linear stability analysis

The global instability modes and accompanying growth rates were computed
by a linear stability analysis method. The perturbations were evolved on
a frozen flow field to eliminate the effect of viscous diffusion of the vortex
cores. The linearised Navier—Stokes equations (4,5) were integrated forward
in time and formed the governing equations for the perturbation evolution.
All computations in the stability investigation were carried out at Re =
20000 . Lacaze et al. [5] employed the frozen baseflow approach to investigate
the elliptic instability of a counter rotating equal strength (CRES) vortex pair
with axial flows.

o i
al; +(0- VU + (- V)T = —VP +vV, (4)

V.u = 0, (5)

where v’ = (U (x,y,z,t),V(x,y,z,t),W(x,y,zt)) are the velocity compo-
nents and P’ is the pressure in the perturbation field; U is the flow field
vectors from the baseflow. Following the work of Sheard et al. [11, 13], the
power method was employed to extract the fastest growing instability mode
at a specified wavelength A. The wavelength of the instability along the axial
direction is defined as A = 27t/k, where k is the axial wavenumber and var-
ied between one and six in this investigation. The instability growth rate of

the global flowfield o is nondimensionalised with the period of self-rotation,
T =47°b2/(TT +T7).
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F1GURE 3: Left: Elliptic instability of a A = —1 vortex pair. Vorticity Per-
turbation field vorticity, w,, (flooded contours) overlaid with baseflow vortic-
ity (contour lines). Red and solid lines are positive vorticity, and blue and
dashed lines represents negative. Normalised perturbation vorticity levels of
Wp/ WG oy = £8.3 x 107 are plotted; where w{, .. is the initial vorticity
maxima of the positive vortex. Middle: Fourier reconstructed vorticity field
of the left figure. Right: A corresponding three dimensional DNS result by
Laporte [6]. Iso-contour lines are vorticity magnitudes.
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Ficure 4: Computed non-dimensional growth rate comparison of the
global instability for the different branches of vortex pairs A = —0.19 (A)
and —0.685 (). Dashed curves are added for guidance.

3 Stability analysis results

Two sets of the instability analysis results are considered in detail in this
article, namely A = —0.19 and —0.685. Both of these configurations are
compared with the case of a CRES vortex pair. An example of the elliptic
instabilities of a CRES vortex pair is shown in Figure 3, with a comparison
between the current linear stability analysis prediction and the DNS result by
Laporte & Corjon [6]. The instability mode has previously been identifed as
belonging to the first branch of the Kelvin mode coupling (—1,1). The classi-
fication agrees with the experimental observations of Leweke & Williamson 7]
who described the instability modes as asymmetric and cooperative.

The non-dimensional growth rates, 0* = o47?b?/(I'" +T7), of the global
instability for A = —0.19 and —0.685 are plotted against the non-dimensional
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F1GURE 5: Left: Instability structure of a vortex pair with A = —0.685 for
the first branch mode (—1,1,1) on the negative vortex. Right: Re-scaled
flooded contours for the positive vortex. Normalised perturbation vorticity
levels of oup/w(“;maX = +3x 10~ are plotted for the left figure and +1.6 x 107>
for the right figure.

axial wavenumber ka in Figure 4. For A = —0.685, three local peaks are
clearly distinguishable; however, only a smooth curve lies across the entire
range of ka for A = —0.19, and overall the case of A = —0.685 have stronger
global instability growth rates.

The instability structure of the first two branch modes for A = —0.685
are shown in Figures 5 and 6, which correspond to the non-dimensional ax-
ial wavenumbers, ka = 2.3 and 3.9, where the local peaks in the instability
growth rate were identified, as shown in Figure 4. The vorticity perturba-
tions were reflectively symmetric which caused the baseflow to yield asym-
metric alterations, which were similar to the core deformations shown in
Figure 3 (middle) for the CRES vortex pair.

The instability radial structure within the core became smaller in scale
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FIGURE 6: As per Figure 5 for the second branch mode (—1,1,2). Nor-
malised perturbation vorticity levels of w,/ w&max = 45 x 10~ are plotted
for the left figure and £3.2 x 107 for the right figure.

with the increment of the instability wavenumber k (the decrement of wave-
length A) when comparing between the branches shown in Figures 5 and 6.
The instability structures grew unevenly on the vortices of the unequal-
strength vortex pairs. The amplitude of the instability was larger on the
negative vortex than the positive vortex, which was due to the stronger in-
duced strain from its counterpart with stronger circulation. The vorticity
perturbation contours were re-scaled to a lower level on the positive vortex
to show the structure of the perturbation within the vortex core.

For the vortex pair of A = —0.19, the instability structure was signif-
icantly different from the previous case. As with the case A = —0.685,
Figure 7 shows two different modes corresponding to ka = 2.3 and 4.2.
According to the growth rate in Figure 4, no distinguishable branch was ob-
served over a range of ka. The first mode (ka = 2.3) showed the property of
reflective symmetry in the instability structure. But the instability structure
in the negative vortex was extremely stretched around the positive vortex
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FiGURE 7: Left: The ka = 2.3 mode of a vortex pair with A = —0.19.
Middle: The ka = 4.2 mode on the negative vortex. Right: Re-scaled flooded
contours for the positive vortex. Normalised perturbation vorticity levels of
Wp/W§ 1y = 5 x 107> are plotted for the left figure, £8.3 x 107> for the
middle figure. and £3 x 107 for the right figure.

and no longer concentrated in the vortex core. When comparing the first
mode to the second mode for A = —0.19, the instability structure of the
negative vortices had no apparent difference when ka was increased. But a
smaller scale instability structure on the positive vortex was found to grow
with increasing ka. Based on the observed instability structure within the
vortex cores, the second branch is believed to be a reflectively asymmetric
mode for the A = —0.19 vortex pair.

4 Conclusion

The elliptic instabilities of a counter rotating vortex pair of unequal strength
were shown to be different from what was known for an equal strength vortex
pair. The highly deformed negative vortex in this study has been shown to
alter the development of the instability. On the other hand, the instability
mode shape observed in the positive vortex followed what was known previ-
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ously. Higher order radial modes were observed as ka was increased. The
maximum predicted growth rate of the global instability mode for the vortex
pair with A = —0.685 was approximately six times higher than for the pair
with A =—0.19.
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