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Open boundary conditions in numerical
simulations of unsteady incompressible flow
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Abstract

In numerical simulations of unsteady incompressible flow, mass
conservation can be enforced using a fractional step method in which
the momentum equations are solved in combination with a pressure
or pressure correction equation. While there is an obvious way to im-
plement most spatial boundary conditions commonly applied to these
equations, the situation for so-called open boundaries is less clear.
Open boundaries must allow fluid to leave the domain with mini-
mal effect on the upstream flow and, at the same time, ensure global
conservation of mass. Previous work found that the open boundary
condition implementations commonly used with lower order fractional
step methods, such as the projection-1 and projection-2 methods, can
cause the higher order projection-3 method to become unstable. We
discuss the implementation of open boundary conditions in combi-
nation with fractional step methods, and investigate three possible
approaches.
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1 Introduction

Fractional step projection methods integrate the Navier–Stokes equations
over each time step by first solving the momentum equations using an ap-
proximate pressure field to yield an intermediate velocity field that does not,
in general, satisfy conservation of mass. A Poisson equation is then solved
with the divergence of the intermediate velocity as a source term to provide
a pressure or pressure correction, which is then used to correct the interme-
diate velocity field, providing a divergence free velocity field. The pressure
is updated and integration then proceeds to the next time step. An exten-
sive list of references for various fractional step methods developed for the
Navier–Stokes equations was given by Armfield and Street [2].

The projection-1 (p1) method sets the pressure field to zero in the momen-
tum equations and the Poisson equation is then solved for the new pressure,
while the projection-2 (p2) method sets the pressure in the momentum equa-
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tions to that obtained at the previous time step, and the Poisson equation is
then solved for a pressure correction. Both the p1 method, with appropriate
intermediate velocity boundary conditions, and the p2 method provide sec-
ond order accuracy in time for the velocity and pressure fields, provided the
momentum equations are integrated using a second order accurate scheme [1].

The projection-3 (p3) method, first proposed by Gresho [3], uses linear ex-
trapolation from previous time steps to give a more accurate estimate of
the pressure used in the momentum equations. This increases the order of
the fractional step error, that is the additional error of the fractional step
method with respect to an iterative scheme, from second to third order [2].
While Shen [8] showed analytically that the p3 method can lead to solutions
that are unbounded in time, Armfield and Street [2] tested the method for
a two dimensional natural convection flow in a square cavity and found that
it remained stable for this case and reduced the size of the overall time step-
ping error by a factor of four. Kirkpatrick and Armfield [5] tested the p3
method for a number of more complex three dimensional flows involving dif-
ferent types of boundary condition. These included a large eddy simulation
of a turbulent convective atmospheric boundary layer. They found that the
method remained stable for all the flows tested, with the exception of cases
in which an open boundary condition was used at one or more boundaries.

Kirkpatrick and Armfield [5] also showed that, by using a more accurate esti-
mate of the pressure in the momentum equations, the p3 method significantly
reduces the required number of sweeps of the matrix equation solver used to
solve the pressure correction equation. Typically this reduction was 30–40%
giving a reduction in run time of approximately 30%. This is a significant
advantage, warranting further research into the method.

In this article we address the issue of stability of the p3 method when used in
combination with open boundary conditions. We discuss three possible ap-
proaches for implementing open boundary conditions with a fractional step
time advancement scheme. We find that only one of the implementations is
consistent in its representation of boundary conditions for both the momen-
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tum and pressure correction equations. Furthermore, we find that when the
consistent open boundary implementation is used the p3 method remains
stable.

We present results for one of our test cases—a large eddy simulation of at-
mospheric boundary layer flow over Mount Wellington in Tasmania. The
numerical simulations are performed using the puffin code [4, 6, 7].

2 Time integration

The Navier–Stokes equations for incompressible flow are written in Cartesian
tensor notation as

∂ui

∂t
+
∂uiuj

∂xj
= −

∂p

∂xi
+
1

Re

∂2ui

∂x2j
, (1)

∂uj

∂xj
= 0 . (2)

Here xi are the components of the position vector, t the time, ui the com-
ponents of the velocity vector, p the pressure/density, and Re the Reynolds
number. For clarity, a very simple form of the equations is used in this
and the next section. All of the conclusions drawn are also applicable to the
more complex equations governing the atmospheric boundary layer flow used
as the test case in Section 4.

Numerical solution of the equations uses a finite volume method on a stag-
gered Cartesian grid. All spatial derivatives are approximated using a second
order central scheme. Time integration uses a hybrid implicit/explicit scheme
in which Crank–Nicolson is used for the diffusion terms and a second order
Adams–Bashforth scheme is used for the advection terms. The scheme is
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Dun+1 = 0 , (4)

where H is the discrete advection operator, G gradient, L diffusion and D di-
vergence. Superscripts refer to time steps with the current timestep being
from n to n + 1 . The use of an explicit scheme for the non-linear terms
ensures that the overall scheme is second order accurate in time without
iteration [7].

One of the main difficulties in implementing this scheme results from the
coupling between the momentum and continuity equations. Fractional step
methods deal with this by dividing the integration into a series of substeps.
The momentum equations are first integrated using an estimate of the pres-
sure p̃n+1/2 at time t = n+1/2 , to obtain an intermediate velocity field ũn+1

i

at time t = n+ 1 , that is

ũn+1 − un

∆t
+

[
3

2
H(un) −

1

2
H(un−1)

]
= −Gp̃n+1/2+

1

2Re
L(ũn+1+un) . (5)

In the p3 method, p̃n+1/2 is obtained by extrapolating from the previous two
time steps using

p̃n+1/2 = 2pn−1/2 − pn−3/2 . (6)

This extrapolation is second order accurate.

In general, the intermediate velocity field obtained by integrating Equa-
tion (5) is not divergence free. In order to obtain a divergence free velocity
field, a Poisson equation is solved for a pressure correction p ′ in which the
source term is the divergence of the intermediate velocity field:

∂2p ′

∂x2j
=
1

∆t

∂ũn+1
j

∂xj
. (7)

The solution of this equation is then used to correct the pressure and velocity:

pn+1/2 = p̃n+1/2 + p ′ , (8)

un+1
i = ũn+1

i − ∆t
∂p ′

∂xi
. (9)
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The velocity correction step constitutes a projection of the intermediate ve-
locity field onto a subspace of divergence free velocity fields. Because the
approximation of the pressure p̃n+1/2 used in the momentum equations is
second order accurate, this projection error is third order accurate in time [2].
However, the accuracy of the overall scheme is still second order due to the
second order accurate integration schemes used for the other terms in the
momentum equations.

3 Open boundary conditions

Figure 1 shows a simple two dimensional domain with a number of different
boundary conditions applied. Because the gradient of the pressure correction
field is used to correct the velocity field, Equation (9), the appropriate bound-
ary condition on the pressure correction equation depends on the boundary
condition applied to the component of velocity normal to the boundary. In
cases such as an inlet, a solid wall, or a zero flux boundary, a Dirichlet bound-
ary condition is applied to the normal velocity component. In this case the
velocity correction is zero and so the appropriate boundary condition for the
p ′-equation is a Neumann boundary condition with

∂p ′

∂n

∣∣∣
b

= 0 . (10)

Open boundaries are usually applied where flow across the boundary is con-
sidered to be strongly dependent on the flow within the domain. A variety
of different boundary conditions may be used; however, the most common is
a simple Neumann boundary condition with the gradient set to zero:

∂un

∂x

∣∣∣
b

= 0 . (11)

We use a staggered grid with nodes arranged as shown in Figure 2. On this
grid, the zero gradient velocity boundary condition above is implemented in
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Figure 1: Simple two dimensional domain.

the discretized momentum equations, Equation (5), as

ũb = ũI−1 , (12)

ub = uI−1 . (13)

Given this boundary condition for un we wish to determine what boundary
condition to apply to the p ′-equation at the open boundary. The pressure
correction boundary condition must satisfy a number of criteria. Firstly, the
boundary condition must lead to a pressure correction field at the boundary
that corrects un at the boundary such that global conservation of mass is
enforced. Secondly, since the pressure correction equation is a Poisson equa-
tion, the boundary conditions applied must satisfy the Cauchy condition,
which states that an equation of the form

∂2π

∂x2
+
∂2π

∂y2
= f(x, y) (14)

has a solution on the domain 0 ≤ x ≤ X and 0 ≤ y ≤ Y only if the integrals
of both sides of the equation over the domain are equal, that is if∫X

0

∫Y
0

∂2π

∂x2
+
∂2π

∂y2
dxdy =

∫X
0

∫Y
0

f(x, y)dxdy . (15)
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Figure 2: Position of grid nodes close to a boundary.

Using the divergence theorem, this condition is rewritten as∫Y
0
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)
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∫
Ω

f(x, y)dω .

(16)
The third criterion is that the p ′-equation boundary condition should be con-
sistent with the boundary condition applied to the momentum equations, in
the sense that it leads to a corrected velocity field that satisfies Equation (13).

In the following subsections we assess three possible choices of boundary
condition for the p ′-equation at open boundaries in light of these criteria.

3.1 Open boundary condition 1

One possible choice is a Dirichlet boundary condition

p ′
b = 0 . (17)
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Consider the problem shown in Figure 1. A Dirichlet boundary condition
is applied to the normal component of velocity at all boundaries other than
the open boundary, so the boundary condition for the p ′-equation on these
boundaries is

∂p ′

∂n

∣∣∣
b

= 0 . (18)

The Cauchy condition applied to the p ′-equation then becomes∫Y
0

∂p ′

∂x

∣∣∣
b
dy =

1

∆t

∫
Ω

∂ũj

∂xj
dω . (19)

With

u ′
i = −∆t

∂p ′

∂xi
, (20)

this gives ∫Y
0

u ′
b dy = −

∫
Ω

∂ũj

∂xj
dω . (21)

From this we conclude that the boundary condition satisfies the Cauchy
condition and also gives a correction to the velocity at the open boundary
that ensures that global mass conservation is enforced. Thus two of the
three criteria set out above are satisfied. However, the third criterion—that
the p ′-equation boundary condition be consistent with the velocity boundary
condition—is not satisfied, since the pressure correction step results in a final
velocity field in which ub 6= uI−1 , which contradicts Equation (13).

3.2 Open boundary condition 2

A second approach involves correcting the open boundary velocity before the
pressure correction step. The divergence of the intermediate velocity field is
integrated over the domain and used to determine a bulk correction required
to give global mass conservation:

U ′
b = −

1

Y

∫
Ω

∂ũj

∂xj
dω . (22)
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This correction is then applied uniformly to the boundary velocity nodes:

ub = ũb +U ′
b . (23)

Since the boundary velocities have now been corrected the appropriate bound-
ary condition for the p ′-equation is

∂p ′

∂x

∣∣∣
b

= 0 . (24)

This approach also satisfies the Cauchy condition and enforces global mass
conservation. However, as with the previous one, ub 6= uI−1 , indicating
that this boundary condition is not consistent with the velocity boundary
condition.

3.3 Open boundary condition 3

In order to derive a boundary condition for p ′ that is consistent with the
velocity boundary condition, we note that if both the intermediate and final
velocity fields are to satisfy the Neumann boundary condition, that is

∂u

∂x

∣∣∣
b

= 0 and
∂ũ

∂x

∣∣∣
b

= 0 , (25)

then so too must the velocity correction,

∂u ′

∂x

∣∣∣
b

= 0 . (26)

Combining this equation with Equation (9) gives the a boundary condition
for p ′:

∂2p ′

∂x2

∣∣∣
b

= 0 . (27)

This boundary condition must lead to ub = uI−1 , since this is implicit in
its derivation. It is also simple to show that it also satisfies the Cauchy
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condition and enforces conservation of mass. The only issue is that, because
the gradient of the pressure correction on the east and west faces of the
Ith row of cells must be the same, the associated coefficients aE and aW in
the discrete equation become zero. As a result the solution in the last row
of cells simply becomes independent of the solution in the remainder of the
domain. We found this not to cause a problem as long as there is no other
communication between the two parts of the domain.

4 Test case

The three boundary conditions discussed in the previous section were tested
for a number of cases. While simulations using the p3 method quickly be-
came unstable when boundary conditions 1 and 2 were used, they remained
stable with boundary condition 3. Here we present results for one of the
test cases—a large eddy simulation of atmospheric boundary layer flow over
Mount Wellington, Tasmania. A figure showing the domain, grid and bound-
ary conditions used for this simulation are attached as supplementary mate-
rial. A movie and still images visualizing the flow are also attached.

The governing equations are the Boussinesq equations for a shallow atmo-
spheric boundary layer. The simulations were run on a 16 cpu parallel
machine, with parallelization achieved using mpi. Details of the equations,
matrix solver, computer architecture and parallelization are given by Kirk-
patrick and Armfield [5].

The simulation was run to 7200 s without any stability problems. Figure 3
shows the time error plotted against time step size for t = 3600 s to 3603 s.
These results demonstrate that the overall scheme is second order accurate
in time as expected.
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Figure 3: Variation of time error with time step size.
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5 Conclusions

Three open boundary conditions for the pressure correction equation were
analysed and tested with the p3 fractional step method. Two of the three
boundary conditions are inconsistent with the zero gradient velocity bound-
ary condition. The third boundary condition, which imposes a requirement
of zero curvature in the pressure correction field across the boundary, is con-
sistent with the zero gradient velocity boundary condition. It also satisfies
the Cauchy condition, and enforces global conservation of mass. While sim-
ulations using the first two boundary conditions remain stable with lower
order fractional step methods, they become unstable when the third order
p3 method is used. Simulations using the zero curvature boundary condition
with the p3 method remained stable for all cases tested.
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