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A study of the Hasegawa–Wakatani equations
using an implicit explicit backward

differentiation formula
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Abstract

The Hasegawa–Wakatani system of equations may be used to pre-
dict and study the behaviour of plasma flow. A recent analytical
study of the use of linear multistep methods to solve the Hasegawa–
Wakatani equations showed the backward differentiation formulas to
be the most stable. The backward differentiation formulas require a
solution of a large dense system of equations, so we implemented an
implicit explicit version of the formula. We study the performance of
the implicit explicit backward differentiation formula on some example
problems where the behaviour of the Hasegawa–Wakatani equation is
predictable. These results suggest that the implicit explicit method is
appropriate to use with the Hasegawa–Wakatani equations.
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1 Introduction

To design or predict the behavior of turbulent flows, prolonged time series
are required so that meaningful statistics on patterns at various scales of
motion are extracted. Studies over a large number of different parameters
are also of interest to help better understand the behaviour of the parameter
space. The computational challenge is to produce a code that generates these
prolonged time series in a reasonable time on readily available machines.

In a recent work by Stals et al. [11] a comparative analysis of several
classes of linear multistep methods was carried out in the context of opti-
mising a code that simulates drift wave turbulence. The theoretical results
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obtained in the work were verified through prototype codes written in Scilab1.

A Fortran code based on an implicit explicit backward differentiation
formula, specifically the sbdf4 method, has since been written and more
substantial results have been obtained and are analysed in this report. In
particular, we focus on the linearisation of the Hasegawa–Wakatani equations
around certain equilibrium points where theoretical approximations are found
to agree with the experimental results produced by the code.

2 The Hasegawa–Wakatani model

The Hasegawa–Wakatani model couples the flow field given by the electro-
static potential φ with the density r [6]. The equations in a two dimensional
domain are

∂

∂t
∇2φ+ [φ,∇2φ] = α(φ− r) − βφ∇6φ , (1)

∂

∂t
r+ [φ, r] = α(φ− r) − κ

∂φ

∂y
− βr∇4r (2)

where φ = φ(x, y, t), r = r(x, y, t), and ∇2d = ∂2d/∂x2d + ∂2d/∂y2d for
d = 1, 2, 3. ∇2 is the two dimensional Laplacian. The Poisson bracket [., .],
defined by

[f, g] =
∂f

∂x

∂g

∂y
−
∂f

∂y

∂g

∂x
,

gives the convective derivative. The parameters, α, βφ, βr and κ are all
non-negative. The coefficients βφ and βr denote viscosity and diffusion co-
efficients respectively. Physically, the κ term feeds energy to the system,
while the energy is dissipated by the parallel resistivity (α) and the hyper-
diffusions.

Others discussed the physical interpretation of the system [2, 6, 9, 10].

1Scilab is freely available via http://www.scilab.org/

http://www.scilab.org/
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2.1 Fourier spectral discretisation

It is appropriate to use a Fourier spectral method to discretise Equations (1)
and (2), since much of the essential physics of interest is contained in the
energy distributions over the scales of the motions.

We assume that φ and r are periodic over the domain Ω = [−π, π] ×
[−π, π]. Following the structure given by Geveci [5] define

H6(Ω) =

{
u : u =

∞∑
a,b=−∞Ua,bω

a
xω

b
y , U∗

a,b = U−a,−b , U0,0 = 0 ,

∞∑
a,b=−∞(a2 + b2)6|Ua,b|

2 <∞} ,
where ωx = eix, ωy = eiy, and a and b are integers. We assume that
φ, r ∈ H6. Set m = 2n for some positive integer n and let the corresponding
discrete space H6m ⊂ H6 be defined as

H6m(Ω) =

{
u : u ∈ H6(Ω), u =

n−1∑
a,b=−n

Ua,bω
a
xω

b
y

}
. (3)

Consequently φm ∈ Hm and rm ∈ Hm are equivalent to the sums

φm(x, y) =

n−1∑
a,b=−n

Φa,bω
a
xω

b
y and rm(x, y) =

n−1∑
a,b=−n

Ra,bω
a
xω

b
y . (4)

Substituting expansion (4) into the Hasegawa–Wakatani equations (1)
and (2), making use of the differentiation properties of the Fourier transform,
and collecting like terms gives

∂

∂t
Φa,b =

(N(φ,∇2φ))a,b

(a2 + b2)
−
α (Φa,b − Ra,b)

(a2 + b2)
− βφ(a2 + b2)2Φa,b , (5)
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∂

∂t
Ra,b = −(N(φ, r))a,b + α (Φa,b − Ra,b) − ibκΦa,b

− βr(a
2 + b2)2Ra,b , (6)

for all modes except the {0, 0} mode where Φ0,0 = R0,0 = 0 .

Cover the real space domain Ω = [−π, π]× [−π, π] by (m+1)2 uniformly
spaced points (xj, yk) where −n ≤ j, k < n (j and k are integers).

The nonlinear terms
(
N(φ,∇2φ)

)
and (N(φ, r)) are equivalent to a con-

volution function in the Fourier space. They are most efficiently calculated
by firstly transforming them into the real space domain Ω, evaluated as
point-wise products, and then transforming the results back into the Fourier
space H6m.

Let the vector φ ∈ Cm×m contain the potential on the grids φj,k =

φm(xj, yk) where −n ≤ j, k < n , and the vector Φ ∈ Cm×m contains
the Fourier modes of the potential Φa,b where −n ≤ a, b < n . Similar
relation holds for r,R ∈ Cm×m where r contains the density on the grids
rj,k = r(xj, yk) and R contains the Fourier modes Ra,b, respectively.

3 Calculating the energy equation

To perform a stability analysis of the Hasegawa–Wakatani equation an ap-
propriate norm must be chosen. A discrete version of the energy equation
given in previous studies [2, 9, 10] worked well with the stability analysis
presented by Stals et al. [11].

Define the discrete inner product between x,y ∈ Cm×m (x = (xj,k) and

y = (yj,k) with −n ≤ j, k < n) as 〈x,y〉2 =
∑n−1
j,k=−n xj,ky

∗
j,k where ∗ denotes

the complex conjugate. The corresponding norm is ‖x‖22 = 〈x, x〉2 .

Let D ∈ Rm×m be defined by Da,b = a2 + b2 (−n ≤ a, b < n). Also
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define Dn ∈ Rm×m to be the same as D except for the {0, 0} mode where
(Dn)0,0 = n . All of the entries in Dn are positive so 〈x,y〉Dn = 〈x, Dn.y〉2
defines a norm. The ‘.’ in Dn.y represents point-wise multiplication.

We define the total system energy for the spectral equations (5) and (6)
to be

E2S =
1

2

(
‖Φ‖2Dn

+ ‖R‖22
)
. (7)

Then

∂E2S
∂t

= < (−iκ〈Φ, B.R〉2)−
(
α‖Φ− R‖22 + βφ‖D.Φ‖2Dn

+ βr‖D.R‖22
)
. (8)

See previous work for a detailed explanation [11]. Observe that the nonlinear
term does not appear in Equation (8). Stals et al. [11, Lemma 5.1] showed
the nonlinear terms drop out from the right-hand side.

When < (−iκ〈Φ, B.R〉2) is bounded, the Hasegawa–Wakatani equations
is dissipative and the stability analysis of Hill [7] predicts the behaviour of
linear multistep methods. Hill’s work is an extension of G-stability intro-
duced by Dahlquist [3, 4, 8]. An interesting conclusion from the analysis
of Dahlquist and Hill is that much of our understanding of the behaviour
of linear systems of ordinary differential equations also applies to nonlin-
ear systems. We showed elsewhere [11] that the dissipative terms βφ∇6φ
and βr∇4r in Equations (1) and (2) have the most influence on the stability
of the system. The nonlinear terms are not expected to have much influence
except for small values of βφ and βr.

Following the ideas presented by Pedersen et al. [10] we define

Ec =
∂E2S
∂t

+< (iκ〈Φ, B.R〉2)+α‖Φ−R‖22+βφ‖D.Φ‖2Dn
+βr‖D.R‖22 . (9)

The time derivative in Equation (9) is approximated by using a fourth order
difference equation and Ec used as an estimate of the numerical error in
examples where the exact solution is not known.
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4 Fortran code

To better understand the theoretical results presented in Section 3 a small
prototype code was written in Scilab [11]. While Scilab is effective for testing
a number of different numerical techniques it does not allow us to solve
problems with large values of m. Therefore a Fortran 90 code has been
written to allow more realistic simulations.

The theoretical analysis showed that the backward differentiation formu-
las (bdf) method is the best linear multistep method for the Hasegawa–
Wakatani equations. The bdf method is an implicit method so a nonlinear
system of equations must be solved at each time step. Unfortunately the
Jacobian associated with the Hasegawa–Wakatani equations is a dense ma-
trix of size m2 ×m2 and while it is possible to obtain results for small test
problems using Scilab another approach needed to be considered for larger
problems.

Instead of the bdf method we implemented the sbdf4 method, which
is a fourth order implicit explicit method. The sbdf4 method combines an
implicit method for the linear terms and an explicit method for the nonlinear
terms. The analysis suggests this is a reasonable choice as the linear terms
are expected to have the most influence on the stability.

4.1 Model problem

A simple model problem used to study the behaviour of the solvers is obtained
by setting φ(x, y, t) = − sin(x) sin(y)e−t and r(x, y, t) = 2 sin(x) sin(y)e−t.
These functions are a solution to Equations (1) and (2) when κ = 0 and
β = βφ = βr = (2 − 3α)/8 . We set α = 0.5 . The start time is t = 0 and
end time is t = 1 so the number of time steps is h−1 where h is the time step
size.
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Figure 1: Convergence rate of Φ for the sbdf4 method applied to the
model problem. The number of time steps = h−1.

Algebraically the Poisson bracket should be zero for this example; how-
ever, due to round off it does not evaluate to exactly zero in the code.

Previous work [11] showed that the Adams–Bashforth and Adam–Moulton
methods required small time step sizes before they showed convergence. The
bdf method on the other hand worked well for large time steps. In those
experiments m was set to 32. In all of the experiments for this article we
increased m to 256.

The convergence rate for the sbdf4 method is given in Figure 1. The re-
sults labelled Error are the difference between the calculated solution and the
exact solution. The results labelled Energy Error are the numerical error esti-
mate defined in Equation (9). The sbdf4 method shows the expected O(h4)

convergence, and converged for large step sizes.
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5 Linear stability analysis

Camargo et al. [1] and Numata et al. [9] describe a linear stability analysis
of the Hasegawa–Wakatani equations. We now use that analysis to further
test our code and increase our understanding of the parameter space.

Assume that the solutions are of the form ei(ax+by−wt) wherew = wr+iwi
and a and b are the Fourier modes in Equation (4). Linearisation of the
Hasegawa–Wakatani equations about the equilibrium point Φ = R = 0

gives the dispersion relation

w2 + iw(d+ 2βk4) − idw∗ − αβk2(k2 + 1) = 0 ,

where k2 = (a2+b2), d = α(1+k2)/k2 and w∗ = bκ/(1+k2) [1, 9]. Solving
for w gives

wi = −
d+ 2βk4

2
±A
√
C+ 1 and wr = ±A

√
C− 1

where A = d/(2
√
2) and C =

√
1+ 16w2∗/d

2. The system is stable when
wi ≤ 0 and unstable when wi > 0 . The results for a number of different
parameter choices are shown in Figures 2 and 3 (we have not shown the
results for varying κ due to space limitations). The thick, green line with
crosses through it represents the curve where wi = 0 . The region to the left
of the thick line is where wi > 0 and the modes in that region are expected to
be unstable. For example, the {1, 1} mode in all the tests shown in Figure 2 is
unstable. The region to the right of the thick line indicates which modes are
expected to be stable. The analysis suggests, for example, that increasing
the dissipation parameters increases the stability of the system.

5.1 Stable test problem

In our first case study we set βφ = βr = 10−2, α = 10−3, κ = 10−1 and
m = 256 . The initial values are Φa,b = 10−4 for 1 ≤ a, b ≤ 10 , with
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Figure 2: Linear stability analysis when α = κ = 1.0 and the dissipation
coefficients β = βφ = βr are varied. The plots are drawn for Fourier modes
0 to 4.
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Figure 3: Linear stability analysis when β = 10−6 and κ = 1.0 , and the
adiabaticity parameter α is varied. The plots are drawn for Fourier modes
0 to 4.
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Φ−a,−b = Φ∗
a,b, and all of the other modes were set to zero. The initial

value of the density is the same as the potential, so R = Φ . Based on the
linear stability analysis we expect the system to be stable for all modes.

When running this test problem the high order modes are removed quickly
while the low order modes are damped more slowly. This agrees with the
linear stability analysis. The energy norm is reduced from 1.3×10−7 at t = 5

to 5.6 × 10−8 at t = 20 and 3.0 × 10−8 at t = 40 as the magnitude of the
Fourier modes is reduced. The step size is h = 2.0 × 10−2. The value of Ec
was below 2.2× 10−14 for all of the time steps.

5.2 Unstable test problem

In the next case study we set βφ = βr = 10−8, α = 100, κ = 5 × 10−2 and
m = 256 . The initial values are Φa,b = 10−4i/(a2 + b2) for 1 ≤ a, b ≤ 10 ,
all of the other modes were set to zero. Once again R = Φ at t = 0 .
According to the linear stability analysis the system will be unstable at modes
0 ≤ a, b ≤ 3 . The results showed an increase in the low order modes and
consequently the energy norm increased as shown in Figure 4.

Table 1 lists Ec for different values of h. The values of Ec is roughly
divided by 16 as h is divided by two. We intend to use Ec as an error
indicator when introducing automatic time step selection. The solver did
not converge for h > 2.44 but it is still converging for relatively large time
step sizes, which indicates that the sbdf4 method performs well on these
example problems.

6 Conclusion

The sbdf4 method worked well on the example Hasegawa–Wakatani equa-
tions given in this report. Based on these results we plan to extend the
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Figure 4: The energy norm increases as the magnitude of the Fourier modes
increase in the unstable test problem.

Table 1: The energy conservation error Ec at time t = 5000 for the unstable
test problem.

h log(Ec)

2.44× 100 1.38× 10−16

1.22× 100 1.45× 10−17

6.10× 10−1 7.33× 10−19

3.05× 10−1 4.00× 10−20
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analysis presented by Stals et al. [11].

The complexity of the solutions to the Hasegawa–Wakatani equations
varies considerably with the choice of parameters. We are working with Nu-
mata et al. [9] to develop a better understanding of the parameter space and
nonlinear behaviour of the equations by using both theoretical and experi-
mental results.
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