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Abstract

We consider an adiabatic model with a two step chain branching
reaction mechanism, and use a numerical scheme to show that as the
parameter characterizing the fuel properties is increased, the com-
bustion waves begin to exhibit oscillatory behaviour. We show that
this behaviour becomes more complex as the fuel parameter is further
increased until extinction of the combustion reaction occurs.
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1 Introduction

Reaction-diffusion models designed to simulate combustion processes have
been studied by researchers over a long period of time [8]. Travelling wave
solutions of these models (known as combustion waves) describe a propagat-
ing flame front, which marks the transition from the initial mixture to the
reactant product equilibrium phase. Combustion waves have been observed
in a number of experiments [8] and are of considerable importance in indus-
trial processes, such as those used to synthesise advanced materials. While
combustion models incorporating only basic one step kinetic schemes have
been extremely useful in predicting behaviour that is qualitatively correct,
more accurate descriptions require the inclusion of more complex chemical
kinetics. Consequently, a number of reaction schemes involving multi-step
kinetics appear in the literature. One such example is the two step, chain
branching model introduced by Dold and Weber [2].

Gubernov et al. [6] and Sidhu et al. [9] investigated properties of the model
introduced by Dold and Weber [2] in the adiabatic case and in the limit of
equal diffusivity of the reactant, the radical and heat. In contrast to Dold
and Weber [2], Gubernov et al. [6] and Sidhu et al. [9] assume that the acti-
vation energy is O(1) (not an infinite number). As noted by Mikolaitis [7],
this is a reasonable assumption for real flames like the hydrogen oxidation
flame. We also used a different nondimensionalization, which enabled us to
make more convenient comparisons between the two and one step models.
Gubernov et al. [6] and Sidhu et al. [9] investigated in detail the properties
of travelling wave solutions using numerical simulation. The numerical sim-
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ulations demonstrated that the speed of a combustion wave as a function
of parameters is single valued. We found that for finite activation energy
there is a residual amount of reactant left behind the travelling combustion
wave which is not used in the reaction [4]. This makes the problem simi-
lar to the nonadiabatic one step premixed flames. The other characteristic
of the model considered by Gubernov, Sidhu et al. [6, 9], which makes the
similarity between the adiabatic two step reaction and the nonadiabatic one
step system even stronger, is that for certain parameter values the combus-
tion wave exhibits extinction. However, for the former case the extinction
occurs at zero flame speed. This mainly distinguishes the one and two step
adiabatic models. The route to extinction in this model was investigated in
detail by Gubernov et al. [5]. They showed that the flame speed as a func-
tion of activation energy approaches zero in a linear fashion. The stability of
the travelling combustion waves was also investigated: for the equidiffusional
case the flame is stable over the wide range of parameter values considered
in the article; a result that correlates with the results of Dold and Weber [2].

The equidiffusional approximation used in our earlier articles [5, 6, 9] makes
the analysis of the problem more convenient. However, this distinguished
limit reduces the applicability of the results to real flames with chain branch-
ing reaction mechanism, which are characterized by various values of Lewis
numbers for both radicals, LB, and fuel, LA. This is especially true for the
stability analysis, since flame stability is expected to depend substantially on
these parameters [2].

Recently, Gubernov et al. [5] investigated the effect of Lewis number varia-
tion on both the properties and stability of combustion waves in this model.
They showed that the Lewis number for fuel has a significant effect on the
properties and stability of premixed flames, whereas variation of the Lewis
number for the radicals has only quantitative (but not qualitative) effects on
the combustion waves. We demonstrate that, when the Lewis number for
fuel is less than unity, the flame speed is a unique, monotonically decreasing
function of the dimensionless activation energy. The combustion wave is sta-
ble and exhibits extinction for finite values of activation energy as the flame
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speed decreases to zero. For fuel Lewis number greater than unity, the flame
speed is a C-shaped and double valued function. The slow solution branch
is shown to be unstable whereas the fast solution branch is stable or exhibits
the onset of pulsating instabilities via the Hopf bifurcation. However, for the
parameter values used in our study, no oscillatory combustion waves were
detected.

The aim in this study is to obtain a detailed map of the onset of pulsating
instabilities in this reaction scheme. This includes the analysis of the various
bifurcations and scenarios leading to instabilities. In particular, we study
the properties of the Hopf bifurcation leading to the onset of pulsations in
detail and investigate the pulsating solutions emerging as a result of this
bifurcation. In the past, both theoretical work, such as that of Bayliss and
Matkowsky [1] and Weber et al. [10], and experimental investigations, such as
that of Feng et al. [3], confirmed the existence of such pulsating combustion
phenomena.

2 Mathematical formulation

We consider an adiabatic model in one spatial dimension that includes two
steps:

autocatalytic chain branching, A+ B → 2B ;

recombination, B+M → C+M . (1)

Here A is the fuel, B is the radical, C is the product, and M represents
any molecule that is required to start the reaction but remains unchanged
by the reaction. As in previous work [5, 9], the governing equations for the
nondimensional temperature, u, concentration of fuel, v, and radicals, w, are
written in nondimensional form as

ut = uxx + rw , (2)
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vt = L−1
A vxx − βvwe−1/u , (3)

wt = L−1
B wxx + βvwe−1/u − rβw , (4)

where x and t are the dimensionless spatial coordinate and time respectively,
LA and LB are the Lewis numbers for fuel and radicals respectively, β is
the dimensionless activation energy of the chain branching step (which cor-
responds to the definition for the one step model [4]), r is the ratio of the
characteristic time of the recombination and branching steps (which cannot
be reproduced in one step approximations of the flame kinetics).

Equations (2)–(4) are considered subject to the boundary conditions

u = 0 , v = 1 , w = 0 for x → +∞ , (5)

ux = 0 , vx = 0 , w = 0 for x → −∞ . (6)

On the right boundary (x → +∞) we have cold (u = 0) and unburned
state (v = 1), where the fuel has not been consumed yet and no radicals
have been produced (w = 0). On the left boundary (x → −∞) neither the
temperature of the mixture nor the concentration of fuel can be specified.
We only require that there is no reaction occurring so the solution reaches
a steady state of (2)–(4). Therefore the derivatives of u and v are zero and
w = 0 for x → −∞ .

3 Travelling wave solution

We seek a solution to the problem (2)–(6) in the form of a travelling wave
u(x, t) = u(ξ), v(x, t) = v(ξ), and w(x, t) = w(ξ), where the coordinate
in the moving frame ξ = x − ct , and c is the speed of the travelling wave.
Substituting this travelling wave solution into the governing equations we
obtain

uξξ + cuξ + rw = 0 , (7)
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L−1
A vξξ + cvξ − βvwe−1/u = 0 , (8)

L−1
B wξξ + cwξ + βvwe−1/u − rβw = 0 , (9)

and boundary conditions

u = 0 , v = 1 , w = 0 for ξ → +∞ , (10)

uξ = 0 , vξ = 0 , w = 0 for ξ → −∞ . (11)

The properties of the travelling combustion waves are investigated numeri-
cally by solving the system of ordinary differential equations (7)–(9) subject
to boundary conditions (11). We use a standard shooting algorithm with a
fourth order Runge–Kutta integration scheme in the first instance and then
correct the results by employing the relaxation algorithm. The investigation
of the travelling combustion waves described by Gubernov et al. [5], using
the methods described above, revealed that the Lewis number for fuel LA
has a substantial effect on the properties of the premixed flames, whereas
the variation of LB and r affects only quantitative behavior of the combus-
tion waves. The results obtained by Gubernov et al. [5] and in the course of
our current work are summarized in Figure 1 where the flame speed is plotted
as a function of β for various values of LA and for LB = 1 and r = 0.001 .
This figure captures all the generic properties of the travelling wave solution
that is possible for this model. In physical terms, increasing β implies that
the fuel is less exothermic, and hence extinction of the combustion process
occurs.

From Figure 1, for the case of Lewis number for fuel less than unity (LA < 1),
the dependence c(β) is a monotonically decaying function exhibiting extinc-
tion as the flame speed reaches zero at a certain value of the activation
energy, βe, corresponding to extinction. The flame speed decreases to zero
according to a quadratic law. However, when LA = 1 the structure of the
travelling solution branch in the parameter space changes: although the de-
pendence of the flame speed, c, on β is still a monotonic function approaching
zero as β reaches some critical value βe ≈ 4.2 corresponding to extinction,
the flame speed now decreases to zero according to a linear law.
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Figure 1: The dependence of the flame speed, c, on the dimensionless
activation energy, β, for four values of Lewis number LA. Solid lines represent
stable solutions, whereas unstable solutions are plotted with dashed lines.
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The dependence of the flame speed, c, on β becomes C-shaped for LA > 1 ;
that is, c(β) is a double valued function. There are either two solutions
travelling with different flame speed or the solutions cease to exist due to the
extinction when the fast solution branch meets the slow solution branch at the
turning point of the c(β) curve. The solution branch also loses its stability at
a Hopf bifurcation point. For the case LA = 10 the Hopf bifurcation occurs
at β ≈ 4.1225 . Despite numerous attempts, we were unable to detect any
pulsating solutions for β > 4.1225 when LA = 10 . For our present analysis,
we concentrate on the case LA = 3 (Figure 1). The Hopf bifurcation point
for LA = 3 is located at β ≈ 4.0703 . The next section examines pulsating
solutions for the case LA = 3 .

4 Oscillatory combustion solutions

We investigate the properties of pulsating combustion wave solutions emerg-
ing as a result of the Hopf bifurcation when the parameters reach critical
values. The governing partial differential equations (2)–(4) are solved in a
sufficiently large coordinate domain with the boundary conditions (5)–(6)
imposed at the edge points of the space grid. For our numerical algorithm
we use the method of splitting with respect to physical processes. Initially
we solve the set of ordinary differential equations which describe the tem-
perature and the species concentration variations due to the branching and
recombination reactions by using the fourth order Runge–Kutta algorithm.
As a next step, equations of mass transfer for fuel and radicals are solved
with the Crank–Nicholson method of second order approximation in space
and time. The initial conditions for the numerical scheme are taken in the
form of the travelling wave solution of (7)–(9).

Figures 2 and 3 show the behaviour of the pulsating combustion wave for
β = 4.08 . This value of β is taken slightly above the critical value β ≈ 4.0703
for the Hopf bifurcation. For brevity and clarity, we only show the oscillatory
behaviour in terms of the radical concentration (the corresponding profiles for
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Figure 2: Pulsating combustion wave displaying the profile for the radical
concentration w(x) for β = 4.08 . Solution profiles are sampled at t1 = 0

(curve 1), t2 = 8750 (curve 2) and t3 = 17500 (curve 3).
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Figure 3: The variation of the maximum concentration of the radical wmax

with time t for β = 4.08 .
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the fuel concentration and temperature are less distinct in terms of displaying
the combustion wave’s pulsating behaviour). Figure 2 shows the pulsating
wave plotted for three values of time t1 = 0 , t2 = 8750 and t3 = 17500 .
The period of oscillations was found to be approximately 30492.5 . Figure 3
clearly shows the periodic dependence of the maximum value of concentra-
tion of the radical with respect to time. In order to clarify the nature of
the Hopf bifurcation, the properties of the emerging periodic solution branch
were investigated in detail. Parameter β is gradually increased beyond the
critical value for the Hopf bifurcation βh ≈ 4.0703 to β = 4.08 and the
pulsating combustion wave is found by solving the governing partial dif-
ferential equations (2)–(4) for each value of the parameter β. The mag-
nitude of oscillations of the maximum value of the radicals concentration,
∆wmax = max{wmax(t)}−min{wmax(t)} over one period 0 < t < T , was anal-
ysed and the dependence of ∆wmax(β) shows root type behaviour typical for
a periodic solution branch emanating from a Hopf bifurcation point. Our
analysis shows that the Hopf bifurcation above is of supercritical type.

As β increases further a period doubling bifurcation occurs in a manner
similar to the one step models considered by Bayliss and Matkowsky [1] and
Weber et al. [10]. We found both period two and period four solutions for
the current model with chain branching reaction mechanism. These results
are illustrated in Figures 4 and 5 respectively for slightly larger values of β.
We conjecture the existence of a sequence of period doubling bifurcations
leading to chaotic solutions before extinction. A detailed analysis of this
conjecture is currently being investigated. We note that extinction occurred
for β ≈ 4.11 .

5 Conclusions

In this article we undertook a preliminary investigation into the oscillatory
behaviour of combustion wave propagation in an adiabatic model with a two
step chain branching reaction mechanism. Pulsating solutions with period
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Figure 4: Period-two solution showing the variation of wmax with time t
for β = 4.0823 .
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Figure 5: Period-four solution showing the variation of wmax with time t
for β = 4.0827 .
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two and period four were observed. At this stage it is not clear whether these
bifurcations are part of the Feigenbaum period doubling cascade leading to
chaos before the extinction of the combustion wave. Although our analysis
presented here was for LA = 3 , the above scenario (the existence of a super-
critical Hopf bifurcation and the emergence of pulsating solutions from the
Hopf bifurcation and the appearance of a period-doubling route to extinc-
tion) was the same for all Lewis numbers of the fuel in the range 1 < LA < 5 .
However, for LA > 5 we have been unable to detect any oscillatory solutions
from the Hopf bifurcation. A possible reason for this is the change in nature
of the Hopf bifurcation from supercritical to subcritical through a Bautin
bifurcation for LA ≈ 5 . This issue needs further clarification and will be
investigated in the course of our ongoing work.
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