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Domain walls and their stability
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Abstract

Using Jacobi elliptic functions we find a complete set of exact peri-
odic and soliton solutions for two waves co-propagating in a defocusing
nonlinear medium. We show using both linear stability analysis and
numerical simulation that these solutions are stable.
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1 Introduction

The construction of exact solutions of nonlinear partial differential equa-
tions is one of the most important and essential tasks in nonlinear science.
This pursuit led to the development of new mathematical techniques such
as the inverse scattering transform, Bäcklund transformation, and Hirota’s
transformation [1]. These techniques are often employed on the nonlinear
Schrödinger (nls) equation which is often viewed as an archetype for many
nonlinear evolution equations. The nls equation is one of a number of non-
linear evolution equations for which exact soliton solutions are available, both
bright and dark [2].

For the case of two electric fields of the form ψ1(z, x)e
−iωt and ψ2(z, x)e

−iωt,
where ω is the frequency, co-propagating in a third order nonlinear medium
satisfy the coupled nonlinear Schrödinger wave equation [3]
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where ψi are the complex envelopes of the polarisation components of the
ith wave, z is the propagation axis, x is the transverse spatial coordinate and
σi = ±1. The independence of the field envelope on time means that group
velocity dispersion does not enter the problem. The coupling constant, α,
also known as the cross-phase modulation, is

α =
1+ B

1− B
,

where B = χ
(3)
1221/χ

(3)
1111 and χ

(3)
ijkl is the third order non-linear susceptibility

tensor. In the absence of coupling (α = 0), the two waves propagate into
the medium without interacting with each other. Kivshar and Agrawal [4]
provide an extensive list of vector soliton solutions for the above system of
equations according to the signs of σi.
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Apart from soliton solutions, these equations are also known to exhibit peri-
odic solutions [5, 6]. Of particular interest to us is the case σi = −1, which
corresponds to the diffraction experienced by a two dimensional spatial beam
in a self-defocusing non-linear medium [7]. Haelterman and Sheppard [7]
employed a shooting method to numerically solve equations (1)–(2). They
demonstrated the existence of stationary periodic solutions that consist of
the superposition of two periodic waves of orthogonal polarisation that are
π radians out-of-phase. Solutions of different periods were numerically found
for several values of α. As the period was permitted to grow without bound,
the periodic waves degenerated to dark solitons. No exact analytic solutions
for the system were found by Haelterman and Sheppard [7]. Our aim is to
look for exact analytic solutions of the system for which σi = −1. We look
for solutions in terms of Jacobi elliptic functions. In part, this is motivated
by the successful implementation of such functions to solve modified versions
of the coupled nls equation [6, 8] and to the self-focusing version of our
system [9]. However, the articles cited here are merely indicative of what is
available in the literature and are not intended to be exhaustive.

The mathematical framework for using the elliptic functions is laid out in
Section 2 and the solutions are derived in Section 3. Here we find some well
known solutions but also some new solutions that are totally distinct from
any other solution set. These solutions constitute a new, rather simple, set
of exact solutions that only exist under certain conditions. Section 4 studies
their stability.

2 Jacobi elliptic function method

We define
ψ1 = u(η)eiβz and ψ2 = v(η)eiβz, (3)
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where η = kx and k is the inverse of the beam width and substitute equa-
tions (3) into equations (1)–(2) to find

k2

2

d2u

dη2
+ βu− u3 − αv2u = 0 , (4)

k2

2

d2v

dη2
+ βv− v3 − αu2v = 0 . (5)

We write the solutions to the above system as a finite sum of powers of a
Jacobi elliptic sine function

u =

n1∑
j=0

aj sn
j(η,m) ,

v =

n2∑
l=0

bl sn
l(η,m) ,

where the constant parameter, m ∈ [0, 1], is the modulus of the elliptic
function. We determine the values of n1 and n2 by balancing the highest
order derivatives with the nonlinear contributions. In this case we get n1 =

n2 = 1. Hence our solution takes on the simple form

u = a0 + a1 sn(η,m) , (6)

v = b0 + b1 sn(η,m) . (7)

The modulus m has a significant impact on the shape of the solutions. For
m → 1, we get the following ansatz

u = a0 + a1 tanh(η) ,

v = b0 + b1 tanh(η) ,

so the soliton wave solution can be recovered from the periodic ones.
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3 Exact periodic and solitary wave solutions

The above equations represent the general solution of the steady state prop-
agation of two coupled waves in a third order non-linear medium. In order
to work out the coefficients a0, b0, a1 and b1 in equations (6)–(7), we sub-
stitute equations (6)–(7) into equations (4)–(5) and collect the coefficients of
resulting powers of sn(η,m). This leads to a system of algebraic equations
from which the coefficients were found using mathematica.

Several solution sets were found, some well known (α = 1) and others new.
New analytic solutions were found only in the case α = 3. For α = 1 equa-
tions (4)–(5) are known to be integrable via the inverse scattering transform.
The solutions are solitons rather than merely solitary waves. The main dis-
tinction being that solitons undergo elastic collisions whereas solitary waves
do not. In the case α = 3 equations (4)–(5) are also integrable. Recently,
Jovanoski et al. [10] reported on periodic solutions for α = 3 in the restricted
case u > 0 and v > 0 , namely,
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which translates to the dark soliton solution
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2
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1+ tanh
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βx
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, (10)
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[
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Figure 1 shows set of solutions given by equations (8)–(9) and (10)–(11).
The periodic solutions are 2K(m)

√
(1+m2)/2β radians out-of-phase, where

K(m) is the complete elliptic integral of the first kind. This is consistent with
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Figure 1: Exact out-of-phase solutions for β = 1 and α = 3. To the left are
the periodic solutions and to the right the soliton solutions (domain walls)
with fields u (solid line) and v.

the numerical simulations of Haelterman and Sheppard [7]. By relaxing the
restriction on the signs of u and v means that (−u, −v) is another solution.

The above system also supports an in-phase periodic solution
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with the associated coupled dark soliton solution
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Figure 2 plots these solutions. Here too, (−u, −v) is also a solution.
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Figure 2: Exact in-phase solutions for β = 1 and α = 3. To the left are the
periodic solutions and to the right the soliton solutions with fields u (solid
line) and v.

We gain further insight into these solutions if we note that equations (4)–(5)
describe the trajectory of a particle moving through the potential (for α = 3)

Π(u, v) = β(u2 + v2) −
1

2
(u4 + v4) − 3u2v2 ,

which has global maxima at (±
√
β, 0) and (0,±

√
β) and saddle points

(±
√
β/2,±

√
β/2). Note that equations (4)–(5) can be normalised with re-

spect to the parameter β under the transformation of variables z → z/β1/2,
u → uβ1/2 and v → vβ1/2. We therefore set β = 1 for the purpose of
numerical analysis but otherwise we keep it explicitly. Figure 3 plots the
potential.

Firstly we show separatrix trajectories in (u, v) space that correspond to
known solutions. Defining the degree of ellipticity as q(x) = (u−v)/(u+v),
then trajectories in the (u, v) plane that connect opposite maxima are the
circularly polarised (q = ±1) dark soliton solutions (±

√
β tanh(

√
βx), 0)

and (0,±
√
β tanh(

√
βx)). On the other hand, separatrix trajectories that

connect opposite saddle points are the linearly polarised (q = 0) dark soliton
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Figure 3: Contour plot of the potential function for β = 1 and α = 3.

solutions (±
√
β tanh(

√
βx)/2,±

√
β tanh(

√
βx)/2) [7, 12]. These constitute

the well known (traditional) dark soliton solutions. Likewise we identify
additional dark soliton solutions whose trajectory connects adjacent maxima.
These are the solutions given above. The periodic solutions are obtained
by starting at points on the separatrix other than at the maximum. Of
particular interest are the solutions given by equations (10)–(11) as they
form the boundary between regions of different polarisations and are called
domain walls [12].

The obvious question is whether these solutions are physically relevant. The
value of α = 3 is certainly outside the bounds of the usual values for α,
namely 2/3 6 α 6 2. We stress that soliton properties are dependent on the
tensorial nature of the the third order nonlinear susceptibility whose values
depend on the mechanism responsible for the induced nonlinearity. Haelter-
man and Sheppard [7] considered several different values of α, particularly
α = 1.2, 2, 7, 40. The range 2/3 6 α 6 2 depicts vector solitons in different
polarisation states where the nonlinearity is electronic in origin. In contrast,
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the nonlinearity induced by molecular reorientation corresponds to α 6 7 [4].
So our choice of α = 3 might indeed be both useful and relevant. Besides,
the soliton solutions we developed are also significant from the mathematical
point of view as they describe another complete set of vector soliton solutions
for an important subset of coupled nonlinear evolution equations.

4 Linear stability analysis

To consider the stability of the dark soliton solution to equations (1)–(2)
when α = 3 we assume a perturbation of the form

Ψ1 =
(
u0 + u1e

λz
)
eiβz , (14)

Ψ2 =
(
v0 + v1e

λz
)
eiβz , (15)

where u0 = u0(x) and v0 = v0(x) are the domain walls expressed by equa-
tions (10)–(11), u1 = u1(x) and v1 = v1(x) are the complex perturbation
eigenmodes (|u1| � u0, |v1| � v0), and λ is the perturbation eigenvalue.
Substituting equations (14)–(15) into equations (1)–(2) and keeping terms
to first order in u1 and v1 we obtain the system of equations

iλu1 −
1

2

∂2u1

∂x2
− βu1 + u20 (u∗1 + u1) + u1

(
u20 + αv20

)
+ αu0v0 (v1 + v∗1) = 0 ,

iλv1 −
1

2

∂2v1

∂x2
− βv1 + v20 (v∗1 + v1) + v1

(
v20 + αu20

)
+ αv0u0 (u1 + u∗1) = 0 .

This system is expanded into a system of four linear equations by rewriting
the eigenmodes so that the real and imaginary parts are explicit, namely,
u1 = ur+ iui and v1 = vr+ ivi. This leads to solving an eigenvalue problem
of the form

LX = λX ,

where X = (ur,ui, vr, vi)
T and L is a 4 × 4 matrix differential operator. If

<(λ) > 0 , the perturbations grow without bounds with propagation dis-
tance z and will destabilise the solitons. Using the arpack software pack-
age [13] the eigenvalues of largest magnitude and with largest real part were
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calculated. The numerics indicated that the real part of λ was always zero
to the limit of numerical accuracy (10−16). This indicates that the domain
wall solitons are stable.

Next we propagated the domain wall soliton using a beam propagation
method based on rational Chebyshev polynomials (rcp) as described by
Towers and Jovanoski [14]. The boundary conditions employed are

lim
z→−∞ |Ψ1| = 0 , lim

z→∞ |Ψ1| = 1 ,

lim
z→−∞ |Ψ2| = 1 , lim

z→∞ |Ψ2| = 0 .

The advantage of using rational Chebyshev polynomials instead of the more
traditional Fourier modes is that the latter uses periodic boundary conditions.
This means that optical fields which propagate out of the calculation window
re-enter the calculation window on the other side. This is an unphysical
situation which can lead to unwanted interference effects. To rectify this
an exponentially ramped dampening of the field towards the periphery of
the numerical window was implemented. This method works well if the field
amplitudes at the edge of the window are small but this is not the case for the
Neumann boundary conditions given above. No such problems arise with the
rcp method which is particularly suited to Neumann boundary conditions
as discussed in detail by Towers and Jovanoski [14].

All calculations were performed to a relative error of less than 0.1%. In
each case we set β = 1, and with an initial random perturbation of the field
amplitude by 5% about the central core. Figure 4 plots the intensities |Ψ1|

2

and |Ψ2|
2 of the domain wall as it propagates through the medium up to

z = 1000. It is evident from the plots that the perturbations do not grow
with propagation distance, consistent with the above linear stability analysis.
The structural integrity of the domain wall soliton is maintained for large
propagation distances leading us to conclude that the domain wall is stable.
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Figure 4: Stable propagation of domain wall solitons for β = 1 and α = 3.
Initial perturbation of 5% in the soliton amplitude.

5 Conclusion

We have found a new set of exact analytic solutions for a coupled system
nonlinear Schrödinger equations in a defocussing material where the nonlin-
earity is induced by molecular reorientation. These solutions are found in
terms of (periodic) Jacobi elliptic functions. As illustrated by phase plane
analysis, these new periodic solutions reduce to dark solitary wave solutions
which are either in-phase or out-of-phase in different parameter regimes.

Linear stability analysis and numerical simulations both indicate that do-
main wall solitons are stable. This implies that domain wall solitons should
in principle be observable. Pitois et al. [15] reported the generation of do-
main wall structures in bimodal fiber. These are not the same as the domain
wall solitons reported here but provide tantalising evidence for these possi-
bly being observed and being manipulated for the purpose of optical data
transmission devices.
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